Skip to main content

Biomedical Application of Natural Polymers

  • Chapter
  • First Online:
Natural Polymers

Abstract

The main areas of biomedicine where biopolymers find applicability include tissue engineering, bone repair/replacement, dental repair/replacement, controlled drug delivery and skin repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarrategi A et al (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102

    Google Scholar 

  • Ahmed AR, Fekry AM, Farghali RA (2013) A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants. Appl Surf Sci 285:309–316

    Google Scholar 

  • Antunes BP et al (2015) Chitosan/arginine-chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr Polym 130:104–112

    Google Scholar 

  • Ayutsede J et al (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208–214

    Google Scholar 

  • Boateng J et al (2015) Composite alginate and gelatin based biopolymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromolecules 79:63–71

    Google Scholar 

  • Braga MEM et al (2008) Supercritical Solvent impregnation of ophthalmic drugs on chitosan derivatives. J Supercrit Fluids 44:245–257

    Google Scholar 

  • Brower V (2010) RNA interference advances to early-stage clinical trials. J Natl Cancer Inst 102:1459–1461

    Google Scholar 

  • Burke JF, Yannas OV, Quinby WC Jr (1981) Successful use of physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413–427

    Google Scholar 

  • Cai ZX et al (2010) Fabrication of chitosan/silk fibroin composite for wound-dressing applications. Int J Mol Sci 11:3529–3539

    Google Scholar 

  • Catalina M et al (2013) From waste to healing biopolymers: biomedical applications of bio-collagen materials extracted from industrial leather residues in wound healing. Materials 6:1599–1607

    Google Scholar 

  • Champeau M et al (2015) Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review. J Controlled Release 209:248–259

    Google Scholar 

  • Cui L et al (2015) A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. J Bionic Eng 12(1):117–128

    Google Scholar 

  • de Blacam C et al (2011) Evaluation of clinical outcomes and aesthetic results after autologous fat grafting for contour deformities of the reconstructed breast. Plast Reconstr Surg 28:411–418

    Google Scholar 

  • Deepthi S et al (2015) Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485

    Google Scholar 

  • Dhandayuthapani B et al (2011) polymer scaffold in tissue engineering applications: a review. Int J Polym Sci 2011(290602):1–19

    Google Scholar 

  • Dias AMA et al (2011) Development of natural based wound dressings impregnated with bioactive compounds and supercritical carbon dioxide. Int J Pharm 408:9–19

    Google Scholar 

  • Dias AMA et al (2013) Wound dressings loaded with an anti-inflammatory juca (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids 74:34–45

    Google Scholar 

  • Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662

    Google Scholar 

  • Duarte ARC, Mano JF, Reis RL (2009) Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion. Acta Biomater 5:2054–2062

    Google Scholar 

  • Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated a-chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051

    Google Scholar 

  • Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Google Scholar 

  • Freiberg S, Zhu XX (2005) Polymer microspheres for controlled drug release. Int J Pharm 282(1–2):1–18

    Google Scholar 

  • Gong S et al (2005) A novel porous natural polymer scaffold for tissue engineering. Eng Med Biol Soc 5:4884–4887

    Google Scholar 

  • Gorczyca G et al (2014) Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution. Carbohydr Polym 102(15):901–911

    Google Scholar 

  • Green S et al (2009) Chitosan derivatives alter release profiles of model compounds from calcium phosphate implants. Carbohydr Res 344(7):901–907

    Google Scholar 

  • Guzman-Aranguez A, Colligris B, Pintor J (2013) Contact lenses: promising devices for ocular drug delivery. J Ocular Pharmacol Ther 29:189–199

    Google Scholar 

  • Hadba AR et al (2011) Isocyanate‐functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications. J Biomed Mater Res Bio Appl Biomater 99:27–35

    Google Scholar 

  • Hartmann H et al (2013) Hyaluronic acid/chitosan multilayer coatings on neuronal implants for localized delivery of siRNA nanoplexes. J Controlled Release 168(3):289–297

    Google Scholar 

  • He C et al (2012) Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. J Mater Chem 22:2111–2119

    Google Scholar 

  • Hirata E et al (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49:3284–3291

    Google Scholar 

  • Hsu WC et al (2000) Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant. Invest Opthalmology Visual Sci 41:2404–2411

    Google Scholar 

  • Hule AR, Pochan DJ (2007) Polymer nanocomposite in biomedical application. MRS Bull 32:354–358

    Google Scholar 

  • Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci 12(1):107–124

    Google Scholar 

  • Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Br Med Bull 106:193–211

    Google Scholar 

  • Ivanova EP, Bazaka K, Crawford RJ (2014) Natural polymer biomaterials: advanced applications. New Funct Biomater Med Healthc 32–70

    Google Scholar 

  • Izumi R, Komada S, Ochi K, Karasawa L, Osaki T, Murahata Y, Tsuka T, Imagawa T, Itoh N, Okamoto Y, Izawa H, Morimoto M, Saimoto H, Azuma K, Ifuku S (2015) Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydr Polym 123:461–467

    Google Scholar 

  • Kelechi TJ et al (2012) A randomized, investigator-blinded, controlled pilot study to evaluate the safety and efficacy of a poly-N-acetyl-glucosamine-derived membrane material in patients with venous leg ulcers. J Am Acad Dermatol 66:e209–e215

    Google Scholar 

  • Kikic I, Vecchione F (2003) Supercritical impregnation of polymers. Curr Opin Solid State Mater Sci 7:399–405

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Google Scholar 

  • Lee YJ et al (2015) Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. Mater Sci Eng C 51:43–50

    Google Scholar 

  • Li W et al (2014a) Ultrasonic elasticity determination of 45S5 Bioglass (R)—based scaffolds: influence of polymer coating and crosslinking treatment. J Mech Behav Biomed Mater

    Google Scholar 

  • Li X et al (2014b) 3D-printed biopolymers for tissue engineering applications. Int J Polym Sci 2014(8291545):1–13

    Google Scholar 

  • Li XM, Huang Y, Zheng LS (2014c) Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro. J Biomed Mater Res A 102A:1092–1101

    Google Scholar 

  • Lima PAL, Resende CX, Almeida Soares GDA (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C 33(6):3389–3395

    Google Scholar 

  • Loxley A (2012) Devices and implant systems by hot-melt extrusion. Hot-Melt Extrusion: Pharm Appl

    Google Scholar 

  • Ma PX, Zhang R (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):469–477

    Google Scholar 

  • Ma SL et al (2010) Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO2 using quartz crystal microbalance as an in situ detector. J Supercrit Fluids 54:129–136

    Google Scholar 

  • Mazaki T et al (2014) A novel visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Reports 4(4457):1–10

    Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Google Scholar 

  • Minami S et al (2014) Effects of chitin and its derivatives on wound-healing acceleration mechanisms. J Chitin Chitosan Sci 2:163–178

    Google Scholar 

  • Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136

    Google Scholar 

  • Mooney DJ et al (1994) Deign and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant 3(2):203–210

    Google Scholar 

  • Mou Z et al (2013) Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Maters Lett 105:189–191

    Google Scholar 

  • Muzzarelli RAA, Mehtedi ME, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano-chitins and nano-chitosans obtained via eco-friendly technologies from marine resources. Marine Drugs 12:5468–5502

    Google Scholar 

  • Nandagiri VK et al (2011) Incorporation of PLGA nanoparticles in porous chitosan-gelatin scaffolds: Influence on the physical properties and cell behaviour. J Mech Behav Biomed Mater 4(7):1318–1327

    Google Scholar 

  • Nardecchia S et al (2012) Osteoconductive performance of carbon nanotube scaffolds homogeneously mineralized by flow-through electrodeposition. Adv Functional Mater 22:4411–4420

    Google Scholar 

  • Nazeer RA, Sri Suganya U (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23(2):327–335

    Google Scholar 

  • Ninan N et al (2013) Synthesis and characterisation of gelatin/zeolite porous scaffold. Eur Polym J 49(9):2433–2445

    Google Scholar 

  • Olivas-Armendariz I et al (2010) Chitosan/MWCNT composites prepared by thermal induced phase separation. J Alloys Compounds 495:592–595

    Google Scholar 

  • Ouriemchi EM, Vergnaud JM (2000) Process of drug transfer with three different polymeric systems with transdermal drug delivery. Comput Theor Polym Sci 10(5):391–401

    Google Scholar 

  • Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416

    Google Scholar 

  • Pu J et al (2015) Electrospun bilayer fibrous scaffolds for enhances cell infiltration and vascularization in vivo. Acta Biomateriallia 13:131–141

    Google Scholar 

  • Rajangam T, An SS (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomed 8:3641–3652

    Google Scholar 

  • Rajzer I et al (2014) Electrospun gelatin/poly(e-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C 44:183–190

    Google Scholar 

  • Ribeiro-Resende VT et al (2009) Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomater 30:5251–5259

    Google Scholar 

  • Roether JA et al (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass (R) for tissue engineering application. Biomaterials 23(18):3871–3878

    Google Scholar 

  • Sahoo NG et al (2010) Polymer nanocomposites based on functional carbon nanotubes Progress Polym Sci 35:837–867

    Google Scholar 

  • Sano H et al (2014) Acellular adipose matrix as a natural scaffold for tissue engineering. J Plast Reconstr Aesthetic Surg 67(1):99–106

    Google Scholar 

  • Serrano MC, Gutierrez MC, del Monte F (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress Polym Sci 39(7):1448–1471

    Google Scholar 

  • Shin SR et al (2012) Carbon nanotube reinforced hybrid microgels as scaffolds materials for cell encapsulation. ACS Nano 6:362–372

    Google Scholar 

  • Siepmann J, Siegel RA, Rathbone MJ (2012) Fundamentals and applications of controlled release drug delivery. Springer, Berlin

    Google Scholar 

  • Singth TRR et al (2009) Physicochemical characterization of polyethylene glycol plasticized poly methyl vinyl ether-co-maleic acid films. J Appl Polym Sci 112:2792–2799

    Google Scholar 

  • Song K et al (2015) Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C

    Google Scholar 

  • Sundaram J, Durance TD, Wang R (2008) Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomaterialia 4(4):932–942

    Google Scholar 

  • Swain SK, Sarkar D (2013) Preparation of nanohydroxyapatite gelatin porous scaffold and mechanical properties at cryogenic environment. Mater Lett 92(1):252–254

    Google Scholar 

  • Thirupathi KR et al (2013) Biochem Biophys Acta 1830:4030–4039

    Google Scholar 

  • Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Progress Polym Sci 33(9):853–874

    Google Scholar 

  • Vlierberghe SV et al (2014) Porous hydrogel biomedical foam scaffolds for tissue repair. Biomed Foams Tissue Eng Appl 335–390

    Google Scholar 

  • Webber MJ et al (2014) A perspective on the clinical translation of scaffolds for tissue engineering. Ann Biomed Eng 1–23. doi:10.1007/s10439-014-1104-7

    Google Scholar 

  • Wei G, Ma PX (2004) Structure and properties of nano hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757

    Google Scholar 

  • Wu X et al (2010) Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia 6(3):1167–1177

    Google Scholar 

  • Wu S et al (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng: R: Reports 80:1–36

    Google Scholar 

  • Yang C et al (2013) Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng 33(1):2203–2212

    Google Scholar 

  • Yannas IV, Burke JF (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14(1):65–81

    Google Scholar 

  • Yannas IV et al (1975) Suppression of in vivo degradability and of immunogenicity of collagen by reaction with glycosaminoglycans. Polym Preprints 16:209–214

    Google Scholar 

  • Yannas IV et al (1977) Multilayer membrane useful as synthetic skin. US patent 4060081

    Google Scholar 

  • Yannas IV, Burke JF, Warpehoski M (1981) Prompt long term functional replacement of skin. Trans Am Soc Artif Intern Organs 27:19–23

    Google Scholar 

  • Yannas IV et al (1982) Regeneration of skin following closure of deep wounds with a biodegradable template. Trans Soc Biomater 5:24–29

    Google Scholar 

  • Yannas IV et al (1985) Polymeric template facilities regeneration of sciatic nerves across 15-mm gap. Trans Soc Biomater 8:146

    Google Scholar 

  • Yildirim ED et al (2008) Fabrication characterization and Biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B 87:406–414

    Google Scholar 

  • Zhang F et al (2011) Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol 48(3):474– 481

    Google Scholar 

  • Zhang H et al (2015) Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase separation (TIPS) method for biomedical applications. Mater Sci Eng C 55:8–13

    Google Scholar 

  • Zurite R, Puiggali J, Rodriguez-Galan A (2006) Loading and release of ibuprofen in multi- and monofilament surgical sutures. Macromol Biosci 6:767–775

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olatunji, O. (2016). Biomedical Application of Natural Polymers. In: Olatunji, O. (eds) Natural Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-26414-1_4

Download citation

Publish with us

Policies and ethics