Skip to main content

Unsatisfiable Formulae of Gödel Logic with Truth Constants and \(\varDelta \) Are Recursively Enumerable

  • Conference paper
  • First Online:
  • 498 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 620))

Abstract

This paper brings a solution to the open problem of recursive enumerability of unsatisfiable formulae in the first-order Gödel logic. The answer is affirmative even for a useful expansion by intermediate truth constants and the projection operator . The affirmative result for unsatisfiable prenex formulae of \(G_\infty ^\varDelta \) has been stated in [1]. In [2], we have generalised the well-known hyperresolution principle to the first-order Gödel logic for the general case. We now propose a modification of the hyperresolution calculus suitable for automated deduction with explicit partial truth.

This work is partially supported by VEGA Grant 1/0592/14.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Sect. 2.

  2. 2.

    We assume a decreasing connective and quantifier precedence: \(\forall \), \(\exists \), \(\lnot \), , \(\wedge \), \(\rightarrow \), , , \(\vee \).

  3. 3.

    We assume a decreasing operator precedence: , , , , , , .

  4. 4.

    Cf. http://ii.fmph.uniba.sk/~guller/sci15.pdf, Appendix, Sect. 5.1.

References

  1. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Theorem proving for prenex Gödel logic with Delta: checking validity and unsatisfiability. Log. Methods Comput. Sci. 8 (2012)

    Google Scholar 

  2. Guller, D.: An order hyperresolution calculus for Gödel logic—General first-order case. In: Rosa, A.C., Correia, A.D., Madani, K., Filipe, J., Kacprzyk, J. (eds.) IJCCI 2012—Proceedings of the 4th International Joint Conference on Computational Intelligence, Barcelona, Spain, 5–7 October 2012, pp. 329–342. SciTePress (2012)

    Google Scholar 

  3. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)

    Article  MathSciNet  Google Scholar 

  4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)

    Article  MathSciNet  Google Scholar 

  5. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)

    Article  MathSciNet  Google Scholar 

  6. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)

    MathSciNet  Google Scholar 

  7. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper and Row Publishers Inc, New York (1985)

    Google Scholar 

  8. Biere, A., Heule, M.J., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Springer (2001)

    Google Scholar 

  10. Pavelka, J.: On fuzzy logic I, II, III. Semantical completeness of some many-valued propositional calculi. Math. Logic Q. 25, 45–52, 119–134, 447–464 (1979)

    Google Scholar 

  11. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. The Springer International Series in Engineering and Computer Science. Springer, US (1999)

    Book  Google Scholar 

  12. Esteva, F., Godo, L., Montagna, F.: The Ł\(\rm {\Pi }\) and Ł\(\rm {\Pi }\) \(\frac{1}{2}\) logics: two complete fuzzy systems joining Łukasiewicz and product logics. Arch. Math. Log. 40, 39–67 (2001)

    Google Scholar 

  13. Savický, P., Cignoli, R., Esteva, F., Godo, L., Noguera, C.: On product logic with truth-constants. J. Log. Comput. 16, 205–225 (2006)

    Article  MathSciNet  Google Scholar 

  14. Esteva, F., Godo, L., Noguera, C.: On completeness results for the expansions with truth-constants of some predicate fuzzy logics. In: Stepnicka, M., Novák, V., Bodenhofer, U. (eds.) New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Ostrava, Czech Republic, September 11–14, 2007, Volume 2: Regular Sessions, Universitas Ostraviensis, pp. 21–26 (2007)

    Google Scholar 

  15. Esteva, F., Gispert, J., Godo, L., Noguera, C.: Adding truth-constants to logics of continuous t-norms: axiomatization and completeness results. Fuzzy Sets Syst. 158, 597–618 (2007)

    Article  MathSciNet  Google Scholar 

  16. Esteva, F., Godo, L., Noguera, C.: First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Ann. Pure Appl. Logic 161, 185–202 (2009)

    Article  MathSciNet  Google Scholar 

  17. Esteva, F., Godo, L., Noguera, C.: Expanding the propositional logic of a t-norm with truth-constants: completeness results for rational semantics. Soft Comput. 14, 273–284 (2010)

    Article  Google Scholar 

  18. Esteva, F., Godo, L., Noguera, C.: On expansions of WNM t-norm based logics with truth-constants. Fuzzy Sets Syst. 161, 347–368 (2010)

    Article  MathSciNet  Google Scholar 

  19. Guller, D.: A generalisation of the hyperresolution principle to first order Gödel logic. In: Computational Intelligence—International Joint Conference, IJCCI 2012 Barcelona, Spain, October 5–7, 2012 Revised Selected Papers. Studies in Computational Intelligence, vol. 577, pp. 159–182. Springer (2015)

    Google Scholar 

  20. Guller, D.: An order hyperresolution calculus for Gödel logic with truth constants. In: Rosa, A.C., Dourado, A., Correia, K.M., Filipe, J., Kacprzyk, J. (eds.) FCTA 2014—Proceedings of the 6th International Joint Conference on Computational Intelligence, Rome, Italy, 22–24 October 2014, pp. 37–52. SciTePress (2014)

    Google Scholar 

  21. Apt, K.R.: Introduction to logic programming. Technical Report CS-R8826, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands (1988)

    Google Scholar 

  22. Guller, D.: On the refutational completeness of signed binary resolution and hyperresolution. Fuzzy Sets Syst. 160, 1162–1176 (2009). Featured Issue: Formal Methods for Fuzzy Mathematics. Approximation and Reasoning, Part II

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Guller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Guller, D. (2016). Unsatisfiable Formulae of Gödel Logic with Truth Constants and \(\varDelta \) Are Recursively Enumerable. In: Merelo, J.J., Rosa, A., Cadenas, J.M., Dourado, A., Madani, K., Filipe, J. (eds) Computational Intelligence. IJCCI 2014. Studies in Computational Intelligence, vol 620. Springer, Cham. https://doi.org/10.1007/978-3-319-26393-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26393-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26391-5

  • Online ISBN: 978-3-319-26393-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics