Skip to main content

EMRI Data Analysis with a Phenomenological Waveform

  • Chapter
  • First Online:
First-stage LISA Data Processing and Gravitational Wave Data Analysis

Part of the book series: Springer Theses ((Springer Theses))

  • 844 Accesses

Abstract

Extreme mass ratio inspirals (EMRIs) (capture and inspiral of a compact stellar mass object into a Massive Black Hole (MBH)) are among the most interesting objects for the gravitational wave astronomy. It is a very challenging task to detect those sources with the accurate estimation parameters of binaries primarily due to a large number of the secondary maxima on the likelihood surface. Search algorithms based on the matched filtering require computation of the gravitational waveform hundreds of thousands of times, which is currently not feasible with the most accurate (faithful) models of EMRIs. Here we propose to use a phenomenological template family which covers a large range of EMRIs parameter space. We use these phenomenological templates to detect the signal in the simulated data and then, assuming a particular EMRI model, estimate the physical parameters of the binary. We have separated the detection problem, which is done in a model-independent way, from the parameter estimation. For the latter one, we need to adopt the model for inspiral in order to map phenomenological parameters onto the physical parameters characterizing EMRIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The total signal here to be a NK waveform with a large number of harmonics. We still truncate the number of harmonics used to build the signal: we stop if the inclusion of the next harmonic does not change overlap with the already built signal by more than 0.1 %.

References

  1. L. Barack, C. Cutler, Phys. Rev. D 69, 082005 (2004). arXiv:gr-qc/0310125

    Article  ADS  Google Scholar 

  2. L. Barack, C. Cutler, Phys. Rev. D 75, 042003 (2007). arXiv:gr-qc/0612029

    Article  ADS  Google Scholar 

  3. S. Babak, J.R. Gair, A. Petiteau, A. Sesana, Class. Quantum Gravity 28, 114001 (2011). arXiv:gr-qc/1011.2062

  4. P. Amaro-Seoane, B. Schutz, C.F. Sopuerta. arXiv:gr-qc/1009.1402

  5. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al. arXiv:gr-qc/1202.0839

  6. N. Warburton, S. Akcay, L. Barack, J.R. Gair, N. Sago, Phys. Rev. D 85, 061501 (2012). arXiv:gr-qc/1111.6908

  7. L. Barack, N. Sago, Phys. Rev. D 81, 084021 (2010). arXiv:gr-qc/1002.2386

  8. J.R. Gair, E.E. Flanagan, S. Drasco, T. Hinderer, S. Babak, Phys. Rev. D 83, 044037 (2011). arXiv:gr-qc/1012.5111

  9. P. Diener, I. Vega, B. Wardell, S. Detweiler, Phys. Rev. Lett. 108, 191102 (2012). arXiv:gr-qc/1112.4821

  10. P. Eric, A. Pound, I. Vega, Liv. Rev. Relativ. 14, 7 (2011). http://www.livingreviews.org/lrr-2011-7

  11. S. Babak, H. Fang, J.R. Gair, K. Glampedakis, S.A. Hughes, Phys. Rev. D 75, 024005 (2007). arXiv:gr-qc/0607007

    Article  ADS  MathSciNet  Google Scholar 

  12. J.R. Gair, K. Glampedakis, Phys. Rev. D 73, 064037 (2006). arXiv:gr-qc/0510129

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Babak, J.R. Gair, E.K. Porter, Class. Quantum Gravity 26, 135004 (2009). arXiv:gr-qc/0902.4133

  14. A. Pound, E. Poisson, Phys. Rev. D 77, 044013 (2008). arXiv:gr-qc/0708.3033

  15. S.A. Teukolsky, Astrophys. J. 185, 635–647 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Martel, Phys. Rev. D 69, 044025 (2004). arXiv:gr-qc/0311017

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Drasco, S.A. Hughes, Phys. Rev. D 73, 024027 (2006). arXiv:gr-qc/0509101

    Article  ADS  Google Scholar 

  18. C.F. Sopuerta, N. Yunes, Phys. Rev. D 84, 124060 (2011). arXiv:gr-qc/1109.0572

  19. C.F. Sopuerta, N. Yunes. arXiv:gr-qc/1201.5715

  20. S. Babak et al., Mock LISA data challenge task force. Class. Quantum Gravity 27, 084009 (2010). arXiv:gr-qc/0912.0548

  21. N.J. Cornish, Class. Quantum Gravity 28, 094016 (2011). arXiv:gr-qc/0804.3323

  22. F.B. Estabrook, H.D. Wahlquist, Gen. Relativ. Gravit. 6, 439 (1975)

    Article  ADS  Google Scholar 

  23. J.W. Armstrong et al., Time-delay interferometry for space-based gravitational wave searches. ApJ 527, 814–826 (1999)

    Article  ADS  Google Scholar 

  24. C. Cutler, Phys. Rev. D, 57, 7089-7102 (1998). arXiv:gr-qc/9703068

    Google Scholar 

  25. L.J. Rubbo, N.J. Cornish, O. Poujade, Phys. Rev. D 69, 082003 (2004). arXiv:gr-qc/0311069

    Article  ADS  Google Scholar 

  26. P. Jaranowski, A. Krolak, B.F. Schutz, Phys. Rev. D 58, 063001 (1998). arXiv:gr-qc/9804014

    Article  ADS  Google Scholar 

  27. R. Prix, J.T. Whelan, Class. Quantum Gravity 24, S565-S574 (2007). arXiv:gr-qc/0707.0128

  28. T.B. Littenberg, N.J. Cornish, Phys. Rev. D 80, 063007 (2009). arXiv:gr-qc/0902.0368

  29. J.R. Gair, I. Mandel, L. Wen, Class. Quantum Gravity 25, 184031 (2008). arXiv:gr-qc/0804.1084p

    Article  ADS  Google Scholar 

  30. J. Kennedy, R.C. Eberhart, in Proceedings of the IEEE, International Conference on Neural Networks, vol. 4 (1995) p. 1942. http://ieeexplore.ieee.org

  31. Y. Wang, S.D. Mohanty, Phys. Rev. D 81, 063002 (2010). arXiv:gr-qc/1001.0923

  32. J. Crowder, N.J. Cornish, L. Reddinger, Phys. Rev. D 73, 063011 (2006). arXiv:gr-qc/0601036

    Article  ADS  Google Scholar 

  33. A. Petiteau, Y. Shang, S. Babak, F. Feroz, Phys. Rev. D 81, 104016 (2010). arXiv:gr-qc/1001.5380

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Y. (2016). EMRI Data Analysis with a Phenomenological Waveform. In: First-stage LISA Data Processing and Gravitational Wave Data Analysis. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26389-2_11

Download citation

Publish with us

Policies and ethics