Skip to main content

A Bridge Between Lyapunov-Krasovskii and Spectral Approaches for Difference Equations

  • Chapter
  • First Online:

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 5))

Abstract

Stability and performance properties of a class of systems governed by linear continuous-time difference equations are investigated. These properties are linked with those of discrete-time linear systems. This analysis is carried out via two approaches, namely Lyapunov-Krasovskii techniques and spectral theory. A discussion on robustness issues is made.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.E. Avellar, J.K. Hale, On the zeros of exponentials polynomials. J. Math. Anal. Appl. 73, 434–452 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bellman, K.L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963)

    MATH  Google Scholar 

  3. P.A. Bliman, Lyapunov equation for the stability of linear delay systems of retarded and neutral type. IEEE Trans. Autom. Control 47(2), 327–335 (2002)

    Article  MathSciNet  Google Scholar 

  4. L.A.V. Carvalho, On quadratic Lyapunov functionals for linear difference equations. Linear Algebra Appl. 240, 41–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.M. Coron, G. Bastin, B. D’Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47(3), 1460–1498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Damak, M. Di Loreto, W. Lombardi, V. Andrieu, Exponential \(L_2\)-stability for a class of linear systems governed by continuous-time difference equations. Automatica (2014) (to appear)

    Google Scholar 

  7. M. Di Loreto, J.J. Loiseau, On the stability of positive difference equations, in Time Delay Systems—Methods, Applications and New Trends, Series LNCIS 423, ed. by R. Sipahi, T. Vyhlidal, S.I. Niculescu, P. Pepe (Springer, New York, 2012), pp. 125–147

    Google Scholar 

  8. S. Elaydi, An Introduction to Difference Equations, 3rd edn. (Springer, New York, 2005)

    MATH  Google Scholar 

  9. E. Fridman, Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273, 24–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Grabowski, F.M. Callier, Boundary control systems in factor form: Transfer functions and input-output maps. Integr. Eqn. Oper. Theory 41, 1–37 (2001) (Birkhauser, Basel)

    Google Scholar 

  11. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  12. K. Gu, Stability problem of systems with multiple delay channels. Automatica 46, 743–751 (2010)

    Article  MATH  Google Scholar 

  13. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)

    Google Scholar 

  14. J.K. Hale, S.M. Verduyn Lunel, Effects of small delays on stability and control, in ed. by H. Bart, I. Gohberg, A. Ran. Operator Theory and analysis 122 (Birkhauser, London, 2001), pp. 275–301

    Google Scholar 

  15. J.K. Hale, S.M. Verduyn Lunel, Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inf. 19, 5–23 (2002)

    Google Scholar 

  16. J.K. Hale, S.M. Verduyn Lunel, Stability and control of feedback systems with time-delays. Int. J. Syst. Sci. 34, 497–504 (2003)

    Google Scholar 

  17. D. Henry, Linear autonomous neutral functional differential equations. J. Differ. Eqn. 15, 106–128 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Hetel, J. Daafouz, C. Iung, Equivalence between the Lyapunov-Krasovskii functional approach for discrete delay systems and the stability conditions for switched systems. Nonlinear Anal. Hybrid Syst. 2(3), 697–705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. V.L. Kharitonov, Lyapunov functionals and Lyapunov matrices for neutral type time delay systems : a single delay case. Int. J. Control 78, 783–800 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Logemann, S. Townley, The effect of small delays in the feedback loop on the stability of neutral systems. Syst. Control Lett. 27, 267–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Melchor-Aguilar, Exponential stability of some linear continuous time difference systems. Syst. Control Lett. 61, 62–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Melchor-Aguilar, Exponential stability of linear continuous time difference systems with multiple delays. Syst. Control Lett. 62, 811–818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. W.R. Melvin, Stability properties of functional differential equations. J. Math. Anal. Appl. 48, 749–763 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Mondié, D. Melchor-Aguilar, Exponential stability of integral delay systems with a class of analytical kernels. IEEE Trans. Autom. Control 57, 484–489 (2012)

    Article  Google Scholar 

  25. C.J. Moreno, The zeros of exponential polynomials. J. Comp. Math. 26, 69–78 (1973)

    MATH  Google Scholar 

  26. P. Pepe, The Lyapunov’s second method for continuous time difference equations. Int. J. Robust Nonlinear Eqn. 13, 1389–1405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Shaikhet, About Lyapunov functionals construction for difference equations with continuous time. Appl. Math. Lett. 17, 985–991 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Verriest, New qualitative methods for stability of delay systems. Kybernetika 37(3), 225–228 (2001)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Di Loreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Damak, S., Di Loreto, M., Lombardi, W., Andrieu, V. (2016). A Bridge Between Lyapunov-Krasovskii and Spectral Approaches for Difference Equations. In: Witrant, E., Fridman, E., Sename, O., Dugard, L. (eds) Recent Results on Time-Delay Systems. Advances in Delays and Dynamics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-26369-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26369-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26367-0

  • Online ISBN: 978-3-319-26369-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics