Skip to main content

Delay System Modeling of Rotary Drilling Vibrations

  • Chapter
  • First Online:

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 5))

Abstract

Vibrations in rotary drilling systems are oscillations occurring without being intentionally provoked. They often have detrimental effects on the system performance and are important source of economic losses; drill bit wear, pipes disconnection, borehole disruption and prolonged drilling time. By this chapter, we provide an improved modeling for the rotary drilling system . Among others, the proposed modeling takes into account; the infinite dimensional settings of problem as well as the nonlinear interconnected dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Abraham, J.E. Marsden, Foundations of Mechanics (The Benjamin/Commings Publishing, 1978)

    Google Scholar 

  2. A.G. Balanov, N.B. Janson, P.V.E. McClintock, C.H.T. Wang, Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string. Chaos, Solitons Fractals 15, 381–394 (2002)

    Article  Google Scholar 

  3. R. Barreto Jijon, C. Canudas-de-Wit, S.-I. Niculescu, J. Dumon, Adaptive observer design, under low data rate transmission with applications to oil well drill-string, in American Control Conference, (Baltimore, Maryland, USA, 2010)

    Google Scholar 

  4. D.A.W. Barton, B. Krauskopf, R.E. Wilson, Nonlinear dynamics of torsional waves in a drill string model with spacial extent. J. Vibr. Control 16, 1049–1065 (2007)

    Article  Google Scholar 

  5. I. Boussaada, H. Mounier, S-I. Niculescu, A. Cela, I. Ciril, K. Trabelsi, Dynamics analysis of a Drillstring model. SIAM Conference on Control and Its Applications (2011)

    Google Scholar 

  6. I. Boussaada, H. Mounier, S-I. Niculescu, A. Cela, in Analysis of Drilling vibrations: A Time-Delay System Approach The 20th Mediterranean Conference on Control and Automation, MED 2012 (Barcelona, Spain, 2012), pp. 1–5

    Google Scholar 

  7. I. Boussaada, A. Cela, H. Mounier, S.-I. Niculescu, Control of Drilling vibrations: A Time-Delay System-Based Approach, 11th IFAC Workshop on Time Delay Systems (Grenoble, France, 2013)

    Google Scholar 

  8. C. Canudas-de Wit, F. Rubio, M. Corchero, D-oskil: a new mechanism for controlling stick-slip oscillations in oil well drillstrings. IEEE Trans. Control Syste. Technol 16(6), 1177–1191 (2008)

    Google Scholar 

  9. N. Challamel, Rock Destruction effect on the stability of a drilling structure. J. Sound Vibr. 233(2), 235–254 (2000)

    Article  Google Scholar 

  10. F. Clayer, H. Heneusse, J. Sancho, Procédé de transmission acoustique de données de forage d’un puits. in World Intellectual Property Organization, March 1992. No. WO 92/04644 (In French)

    Google Scholar 

  11. F. Collado, B. D’Andréa-Novel, M. Fliess, H. Mounier, Rock Destruction effect on the stability of a drilling structure. XXIIe Colloque GRETSI 1–4 (2009)

    Google Scholar 

  12. E. Detournay, T. Richard, M. Shepherd, Drilling response of drag bits : theory and experiment. J. Rock Mech. Min. Sci. 45, 1347–1360 (2008)

    Article  Google Scholar 

  13. E. Detournay, P. Defourny, A phenomenological model of the drilling action of drag bits. Int. J. Rock Mech. Min. Sci. 29(1), 13–23 (1992)

    Article  Google Scholar 

  14. D. Drumheller, Acoustical properties of drill strings. J. Acoust. Soc. Am. 85(3), 1048–1064 (1989)

    Article  Google Scholar 

  15. D. Drumheller, An overview of acoustic telemetry. Sandia Research Report, Sand-92-0677c, December 1992

    Google Scholar 

  16. D. Drumheller, S. Knudsen, The propagation of sound waves in drill strings. J. Acoust. Soc. Am. 97(4), 2116–2125 (1995)

    Article  Google Scholar 

  17. E. Fridman, S. Mondié, B. Saldivar, Bounds on the response of a drilling pipe model. IMA J. Math. Control Inf. 1–14 (2010)

    Google Scholar 

  18. C. Germay, N. Van De Wouw, H. Nijmeijer, R. Sepulchre, Nonlinear drilling dynamics analysis. SIAM J. Dyn. Syst. 8, 527–553 (2005)

    Article  Google Scholar 

  19. C. Germay, Modeling and Analysis of self-excited Drill Bit Vibrations. PhD dissertation, University of Liège, 2009

    Google Scholar 

  20. G.H. Golub, C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, 1983)

    MATH  Google Scholar 

  21. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  22. A. Kyllingstad, G.W. Halsey, A study of stick/slip motion of the bit. SPE Drill. Eng. 3–4, 369–373 (1988)

    Article  Google Scholar 

  23. X. Liu, B. Li, Y. Yue, Transmission behavior of mud-pressure pulse along well bore. J. Hydrodyn. 19(2), 236–240 (2007)

    Article  Google Scholar 

  24. I. Lopez, H. Nijmeijer, Prediction and validation of the energy dissipation of a friction damper. J. Sound Vibr. 328, 396–410 (2009)

    Article  Google Scholar 

  25. H. Mounier, Propriétés structurelles des systèmes linéaires a retard : Aspects théorique et pratique. Thèse de l’Université Paris-Sud, 1995, 148pp

    Google Scholar 

  26. H. Mounier, P. Rouchon, J. Rudolph, Some examples of linear systems with delays. JESA-APII-RAIRO 31(6), 911–925 (1997)

    Google Scholar 

  27. E.M. Navarro-López, D. Cortés, Sliding-mode control of a multi-dof oilwell drillstring with stick-slip oscillations, in American Control Conference (2007), pp. 3837–3842

    Google Scholar 

  28. E.M. Navarro-López, R. Suárez, Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstring, in IEEE, International Conference on Control Applications (2004), pp. 3162–3174

    Google Scholar 

  29. E.M. Navarro-López, R. Suárez, Modelling and analysis of stick-slip behavior in a drillstring under dry friction. Congreso anual de la AMCA 2004, 330–335 (2004)

    Google Scholar 

  30. E.M. Navarro-López, An alternative characterization of bit-sticking phenomena in a multi-degree-of-freedom controlled drillstring. Nonlinear Anal. Real World Appl. 10(5), 3162–3174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Parfitt, R.W. Tucker, C. Wang, Drilling guidlines from the cosserat dynamics of a drill-rig assembly. preprint (2000)

    Google Scholar 

  32. D. Pavone, J.P. Desplans, Analyse et Modélisation du comportement dynamique d’un rig de forage. IFP report 42208 (1996)

    Google Scholar 

  33. T. Richard, C. Germay, E. Detournay, A simplified model to explore the root cause of stick-slip vibrations in drilling system with drag bits. Appl. Math. Comput. 305, 432–456 (2007)

    Google Scholar 

  34. I. Rey-Fabret, J.F. Nauroy, O. Vincké, Y. Peysson, I. King, H. Chauvin, F. Cagnard. Intelligent drilling surveillance through real time diagnosis. Oil Gas Sci. Technol. Rev. IFP 59(4), 357–369 (2004)

    Google Scholar 

  35. P. Rouchon, Flatness and stick-slip stabilization. Tech. Rep. 492, 1–9 (1998)

    Google Scholar 

  36. B. Saldivar, S. Mondié, J-J. Loiseau, V. Rasvan, Stick-slip oscillations in oillwell drilstrings: Distributed parameter and neutral type retarded model approaches, in IFAC 18th World Congress Milano (Italy) (2011), pp. 283–289

    Google Scholar 

  37. B. Saldivar, S. Mondié, Drilling vibration reduction via attractive ellipsoid method. J. Franklin Inst. 350(3), 485–502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Saldivar, S. Mondié, J.-J. Loiseau, V. Rasvan, Suppressing axial torsional coupled vibrations in oilwell drillstrings. J. Control Eng. Appl. Inf. 15(1), 3–10 (2013)

    Google Scholar 

  39. P. Tubei, C. Bergeron, S. Bell, Mud-pulser telemetry system for down hole Measurement-While-Drilling, in IEEE 9th Proceedings Instrument and Measurement Technology Conference (1992), pp. 219–223

    Google Scholar 

  40. R.W. Tucker, C. Wang, Torsional vibration control and Cosserat dynamics of a drill-rig assembly. Meccanica 38(1), 145–161 (2003)

    Article  MATH  Google Scholar 

  41. R.W. Tucker, C. Wang, On the effective control of torsional vibrations in drilling systems. J. Sound Vibr. 224(1), 101–122 (1999)

    Article  Google Scholar 

  42. R.W. Tucker, C. Wang, The excitation and control of torsional slip-stick in the presence of axialvibrations. preprint (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam Boussaada .

Editor information

Editors and Affiliations

Appendix: Notations table

Appendix: Notations table

Variable

Signification

\(L_p\)

Pipe length

\(L_b\)

Bor Hole Assemble length

L

\(= L_p + L_b\)

\(U_p\), \(U_b\)

Pipe, drill collar traction/compression deformation

\(\varPhi _p\), \(\varPhi _b\)

Pipe, drill collar torsional deformation

\(\varepsilon _{U_p}^i\), \(\varepsilon _{\varPhi _p}^i\)

Internal damping coefficients

\(\gamma _{U_p}^v\), \(\gamma _{\varPhi _p}^v\)

Viscous damping coefficients

\(\rho \)

Steel density

E, G

Young’s, shear modulus of drillstring steel

\(A_p\), \(J_p\)

Cross-section and polar inertia moment of one pipe section

\(A_b\), \(J_b\)

Cross-section and polar inertia moment of one drill collar section

\(r_{po}\), \(r_{pi}\)

Outer, inner pipe radius

\(r_{bo}\), \(r_{bi}\)

Outer, inner drill collar radius

\(\varPsi _{\varPhi d}\), \(\varPsi _{U d}\)

D component of rotary table (torsion) induction motor flux

\(L_{\varPhi m}\), \(L_{U m}\)

Torsion, traction/compression induction motor mutual inductance

\(I_{\varPhi d}\), \(I_{\varPhi q}\)

D, Q component of stator current in torsion induction motor

\(I_{U d}\), \(I_{U q}\)

D, Q component of stator current in traction/compression induction motor

\(J_{top}\)

Top drive inertia

\(u_T\)

Rotary table motor torque, taken as a control input

H

Force acting in the top hole device

\(\zeta _{rg_1}\)

Accounts for vibrations in all drilling rig elements except the drilling string, BHA, cables, drawworks, travelling and crown blocks

\(\zeta _{rg_2}\)

Accounts for elasticity in cables, crown and travelling blocks

\(k_{rg_{01}}\zeta _{rg_{ini}}\)

Ground reaction force

\(u_F (t)\)

\(= k_{rg_{01}} (\zeta _{rg_1}(t) -\zeta _{rg_0}(t) )\), tension force in the cable at the drawworks level, taken as a control input

\(M_{rg_i}\), \(\gamma _{rg_1}\), \(k_{rg_{ij}}\)

Equivalent masses, damping coefficients and stiffness coefficients

\(M_{top}\)

Top drive mass

\(U_b\), \(\varPhi _b\)

axial, torsional vibrations

\({T_{bit}}\)

Bit reaction torque

\(M_{bit}\)

Bit’s mass

\(W_{bit}(t)\)

Reaction force at the bit

\(T_c\), \(W_c\)

Bottom hole cutting torque and force

\(T_f\), \(W_f\)

Bottom hole friction torque and force

a

Bit radius

l

Length of the wearflat

\(\sigma \)

Contact stress

\(\gamma \)

accounts for the distribution and orientation of the frictional forces acting at the wearflat/rock interface

\(\mu \)

Ratio between the horizontal and the vertical components of the frictional force

\(V_b\)

\(=(\partial _t U_p,\partial _t \varPhi _p)\)

\(\text {sgn}(V_b)\)

designate the orientation of \(V_b\) with respect to the horizontal plane

\(\mathscr {F}\)

Adimensional friction function

d

Depth of cut

\(\varepsilon \)

Intrinsic specific energy

\(\zeta \)

Ratio of the vertical to the horizontal force for a sharp cutter

n

Bit blade number

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boussaada, I., Saldivar, B., Mounier, H., Mondié, S., Cela, A., Niculescu, Sl. (2016). Delay System Modeling of Rotary Drilling Vibrations. In: Witrant, E., Fridman, E., Sename, O., Dugard, L. (eds) Recent Results on Time-Delay Systems. Advances in Delays and Dynamics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-26369-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26369-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26367-0

  • Online ISBN: 978-3-319-26369-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics