Skip to main content

Mechanics and Chemistry of Respiration in Health

A Synopsis of the Regulation of Breathing

  • Chapter
  • First Online:

Abstract

In this chapter, a basic review of the structure and function of the human respiratory system is provided, with particular attention to its key regulatory components. The chapter offers a detailed description of the different pathways involved in the control of ventilation under physiological conditions and outlines how ventilation is modulated by neural and chemical cues, focusing on the interplay between central and peripheral chemoreceptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CCHS:

Congenital central hypoventilation syndrome

CNS:

Central nervous system

CP :

Transpulmonary compliance

CT :

Thoracic compliance

CTP :

Thoracopulmonary compliance

DPG:

Diphosphoglycerate

DRG:

Dorsal respiratory group

E1:

First phase of expiration

E2:

Second phase of expiration

early-I:

Early inspiratory

Eaug:

Expiratory augmenting

ERV:

Expiratory reserve volume

FEV1:

Forced expiratory volume in 1 s

FRC:

Functional residual capacity

GABA:

Gamma-amino butyric acid

GPR4:

G-protein coupled receptor 4

HbA:

Haemoglobin A

HCVR:

Hypercapnic ventilatory response

HVR:

Hypoxic ventilatory response

Iaug:

Inspiratory augmenting

IRV:

Inspiratory reserve volume

J receptor:

Juxtacapillary receptors

late-I:

Late inspiratory

NBCe:

Electrogenic sodium/bicarbonate cotransporters

NO:

Nitric oxide

nNOS:

Neural nitric oxide synthase

NTS:

Nucleus tractus solitarii

Pao :

Alveolar pressure

PBS :

Pressure at body surface

PL :

Transpulmonary pressure

Ppl :

Intrapleural pressure

PCs:

Peripheral chemoreceptors

PTT :

Transthoracic pressure

post-I:

Post-inspiratory

pre-I:

Pre-inspiratory

PRG:

Pontine respiratory group

R:

Relaxed

RARs:

Rapidly adapting receptors

RTN:

Retrotrapezoid nucleus

RV:

Residual volume

SIDS:

Sudden infant death syndrome

T:

Tense

TASK:

TWIK-related acid-sensitive K+ channel

TEA:

Tetraethylammonium

VC:

Vital capacity

VT :

Tidal volume

References

  1. Conti F, Battaglia-Mayer A. Section 4: Sistema Respiratorio. In: Fisiologia medica, Vol. 2, Milano: Ed. Ermes; 2010. pp. 239–79; 381–405.

    Google Scholar 

  2. Hall J, Guyton A. Chapter 38: Pulmonary ventilation. In: Textbook of medical physiology. Philadelphia: Saunders; 2011. pp. 497–502; 539–45.

    Google Scholar 

  3. Lumb AB, Pearl RG. Part 1: Basic principles. In: Nunn’s applied respiratory physiology, 6th ed. Edinburgh: Elsevier Health Sciences; 2005. pp. 12–4; 25–79; 174–80.

    Google Scholar 

  4. Charalampidis C, Youroukou A, Lazaridis G, Baka S, Mpoukovinas I, Karavasilis V, et al. Physiology of the pleural space. J Thorac Dis. 2015;7 Suppl 1:S33–7.

    PubMed  PubMed Central  Google Scholar 

  5. Nelson D, Lehninger A, Cox M. Chapter 5.1: Reversible binding of a protein to a ligand: oxygen-binding proteins. In: Lehninger principles of biochemistry. 5th ed. New York: W.H. Freeman; 2008. p. 158–72.

    Google Scholar 

  6. Boron WF, Boulpaep EL. Chapter 32: Control of ventilation. In: Medical physiology. 2nd updated ed. St. Louis: Elsevier Health Sciences; 2012, pp. 725–45.

    Google Scholar 

  7. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth J. Principles of neural science. 5th ed. New York: McGraw Hill Professional; 2013. p. 1031–6.

    Google Scholar 

  8. Duffin J, Bechbache RR, Goode RC, Chung SA. The ventilatory response to carbon dioxide in hypoxic exercise. Respir Physiol. 1980;40:93–105.

    Article  CAS  PubMed  Google Scholar 

  9. Blain GM, Smith CA, Henderson KS, Dempsey JA. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol. 2009;106:1564–73.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dempsey JA, Smith CA, Blain GM, Xie A, Gong Y, Teodorescu M. Role of central/peripheral chemoreceptors and their interdependence in the pathophysiology of sleep apnea. Adv Exp Med Biol. 2012;758:343–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kaur S, Pedersen NP, Yokota S, Hur EE, Fuller PM, Lazarus M, et al. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci. 2013;33:7627–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourbeau J, et al. American Thoracic Society Committee on Dyspnea. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185:435–52.

    Article  PubMed  Google Scholar 

  13. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, et al. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science. 2007;317:953–7.

    Article  CAS  PubMed  Google Scholar 

  14. Taugher RJ, Lu Y, Wang Y, Kreple CJ, Ghobbeh A, Fan R, et al. The bed nucleus of the stria terminalis is critical for anxiety-related behavior evoked by CO2 and acidosis. J Neurosci. 2014;34:10247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar P, Prabhakar NR. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol. 2012;2:141–219.

    PubMed  PubMed Central  Google Scholar 

  16. Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev. 1994;74:829–98.

    CAS  PubMed  Google Scholar 

  17. Prabhakar NR, Peng YJ. Peripheral chemoreceptors in health and disease. J Appl Physiol. 2004;96:359–66.

    Article  CAS  PubMed  Google Scholar 

  18. Nurse CA. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol. 2010;95:657–67.

    Article  CAS  PubMed  Google Scholar 

  19. Nattie E, Comroe Jr JH. Distinguished lecture: central chemoreception: then … and now. J Appl Physiol. 2011;110:1–8.

    Article  CAS  PubMed  Google Scholar 

  20. Guyenet PG, Bayliss DA. Neural control of breathing and CO2 homeostasis. Neuron. 2015;87:946–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loeschcke HH. Central chemosensitivity and the reaction theory. J Physiol. 1982;332:1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar NN, Velic A, Soliz J, Shi Y, Li K, Wang S, et al. Regulation of breathing by CO2 requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science. 2015;348/6240:1255–60.

    Article  Google Scholar 

  23. Ruffault PL, D’Autréaux F, Hayes JA, Nomaksteinsky M, Autran S, Fujiyama T, et al. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2. eLIFE. 2015;4:e07051.

    Article  PubMed Central  Google Scholar 

  24. Nattie E, Li A. Central chemoreception 2005: a brief review. Auton Neurosci. 2006;126–127:332–8.

    Google Scholar 

  25. Lassen NA. Is central chemoreceptor sensitive to intracellular rather than extracellular pH? Clin Physiol. 1990;10:311–9.

    Article  CAS  PubMed  Google Scholar 

  26. Summers BA, Overholt JL, Prabhakar N. CO2 and pH independently modulate L-type Ca2+ current in rabbit carotid body glomus cells. J Neurophysiol. 2002;88:604–12.

    CAS  PubMed  Google Scholar 

  27. Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN, Deneris ES, et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci. 2008;28:2495–505.

    Article  CAS  PubMed  Google Scholar 

  28. Erlichman JS, Leiter JC. Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. J Appl Physiol. 2010;108:1803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ganong WF. Review of medical physiology, vol. 36. 21st ed. New York: Lange Medical Books/McGraw- Hill; 2003. p. 675–85.

    Google Scholar 

  30. Duffin J. Measuring the ventilatory response to hypoxia. J Physiol. 2007;584:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duffin J. The chemoreflex control of breathing and its measurement. Can J Anaesth. 1990;37:933–42.

    Article  CAS  PubMed  Google Scholar 

  32. Peña F, Parkis MA, Tryba AK, Ramirez JM. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron. 2004;43:105–17.

    Article  PubMed  Google Scholar 

  33. Tryba AK, Peña F, Ramirez JM. Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J Neurosci. 2006;26:2623–34.

    Article  CAS  PubMed  Google Scholar 

  34. Marina N, Tang F, Figueiredo M, Mastitskaya S, Kasimov V, Mohamed-Ali V, et al. Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats. Basic Res Cardiol. 2013;108:317.

    Article  PubMed  Google Scholar 

  35. Darnall RA. The carotid body and arousal in the fetus and neonate. Respir Physiol Neurobiol. 2013;185:132–43.

    Article  PubMed  Google Scholar 

  36. Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2:743–77.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Passino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Passino, C., Cacace, E., Caratozzolo, D., Rossari, F., Saccaro, L.F. (2017). Mechanics and Chemistry of Respiration in Health. In: Emdin, M., Giannoni, A., Passino, C. (eds) The Breathless Heart. Springer, Cham. https://doi.org/10.1007/978-3-319-26354-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26354-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26352-6

  • Online ISBN: 978-3-319-26354-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics