Skip to main content

Combined Magnetic Field Sensor with Nanosized Elements

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 175))

Abstract

We investigate a superconducting film ring with a narrowed part (active strip ) used as a magnetic field concentrator or magnetic flux transformer in combined magnetic field sensors. Fragmentation (nanostructuring) of the active strip in numerous branches and cuts and simulation of their nanoscale size and positions make it possible to significantly enhance the efficiency of the combined magnetic field sensor with a resolution of ≤10 pT, which operates on the base of superconductivity and spintronics phenomena. It was established that the efficiency of concentration of a measured magnetic field on a magnetosensitive element based on the giant magnetoresistive effect can be enhanced using fragmentation of an active strip by cuts with a width of 20−350 nm. The magnetic field concentrator with low-temperature superconductor (e.g., niobium with the London penetration depth \(\lambda \sim 60 \, {\text{nm}}\)) films exhibits higher efficiency, than the concentrator with high-temperature superconductor films of the Y-123 or Bi-2223 systems with \(\lambda \sim 2 5 0\,{\text{nm}}\). The magnetic field resolution and maximum field values estimated for a combined magnetic field sensor based on different low- and high-temperature layers and spintronic elements are ≤1 fT and ≤40 µT (the Earth’s magnetic field), respectively. Characteristics of the investigated sensor are comparable with the parameters of SQUIDs .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The superconducting ring works as an MFC when the detected element is sensitive to the magnetic field and as an MFT when the detected element is sensitive to the magnetic flux.

References

  1. D. Robbes, Sens. Actuators, A 129(1), 86 (2006)

    Article  Google Scholar 

  2. D. Drung, C. Assmann, J. Beyer et al., IEEE Trans. Appl. Supercond. 17(2), 699 (2007)

    Article  Google Scholar 

  3. C.M. Wilson, Nature 479(7373), 376 (2011)

    Article  Google Scholar 

  4. V.S. Zotev, A.N. Matlashov, P.L. Volegov et al., Supercond. Sci. Technol. 20, S367 (2007)

    Article  Google Scholar 

  5. P.T. Vesanen, J.O. Nieminen, K.C.J. Zevenhoven et al., Magn. Reson. Med. 69, 1795 (2013)

    Article  Google Scholar 

  6. V.S. Zotev, A.N. Matlashov, P.L. Volegov et al., J. Magn. Reson. 194, 115–120 (2008)

    Article  Google Scholar 

  7. V.A. Mal`gichev, A.M. Nevzorov, S.V. Selishchev et al., Biomed. Eng. 44, 2019 (2011)

    Google Scholar 

  8. J.C. Oliveira, M. Martinelli, S.A. D’Orio Nishioka S et al., Circ Arrhythmia Electrophysiol. 2(1), 29 (2009)

    Article  Google Scholar 

  9. P.E. Marik, M. Baram, Critical Care Clins. 23, 383 (2007)

    Article  Google Scholar 

  10. www.tristantech.com

  11. www.starcryo.com

  12. www.supracon.com

  13. M. Pannetier-Lecoeur, C. Fermon, G. Le Goff et al., Science 304(5677), 1648 (2004)

    Article  Google Scholar 

  14. M. Pannetier, C. Fermon, G. Le Goff et al., IEEE Trans. Appl. Supercond. 15(2), 892 (2005)

    Article  Google Scholar 

  15. M. Pannetier-Lecoeur, C. Fermon, A. de Vismas et al., J. Magn. Magn. Mater. 316, e246 (2007)

    Article  Google Scholar 

  16. M. Pannetier-Lecoeur, L. Pakkonen, N. Sergeeva-Chollet et al., Appl. Phys. Lett. 98(15), 153705 (2011)

    Google Scholar 

  17. N. Sergeeva-Chollet, H. Dyvorne, H. Polovy et al., Adv. Biomagn. BIOMAG2010 IFMBE Proc. 28, 70 (2010)

    Article  Google Scholar 

  18. N. Sergeeva-Chollet, H. Dyvorne, J. Dabek et al., J. Phys: Conf. Ser. 303, 012055 (2011)

    Google Scholar 

  19. L. Ichkitidze, A.N. Mironyuk, Physica C 472(1), 57 (2012)

    Article  Google Scholar 

  20. L.P. Ichkitidze, A.N. Mironyuk, J. Phys.: Conf. Ser. 400(Part 2), 022032 (2012)

    Google Scholar 

  21. L.P. Ichkitidze, AIP Adv. 3(6), 062125 (2013)

    Article  Google Scholar 

  22. V.V. Schmidt, Introduction to the Physics of Superconductors, 411pp. Moscow. ISBN 5-900916-68-5. (In Russian)

    Google Scholar 

  23. L.P. Ichkitidze,V.I. Skobelkin, Fizika Nizkih Temperature (USSR), 11(8), 839 (1985) (In Russian)

    Google Scholar 

  24. M.A. Bodea, J.D. Pedarnig, T.D. Withnell et al., J. Phys: Conf. Ser. 234, 012006 (2010)

    Google Scholar 

  25. http://www.htspeerreview.com/2008/pdfs/presentations/tuesday/plenary/europe_update.pdf

  26. B.P. Mikhailov, L.P. Ichkitidze, YuE Grigorashvili et al., Inorg. Mater. 39(7), 749 (2003)

    Article  Google Scholar 

  27. L.P. Ichkitidze, Bull. Russian Acad. Sci. Phys. 71(8), 1145 (2007)

    Article  Google Scholar 

  28. http://www.mrn.org/collaborate/elekta-neuromag-meg

Download references

Acknowledgments

We are grateful to Profs. V.M. Podgaetskii for useful discussions and N.S. Shichkin for help in the calculations. The investigation was performed by a grant from the Russian Science Found (Project No. 14-39-00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ichkitidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ichkitidze, L.P., Selishchev, S.V., Telishev, D.V. (2016). Combined Magnetic Field Sensor with Nanosized Elements. In: Parinov, I., Chang, SH., Topolov, V. (eds) Advanced Materials. Springer Proceedings in Physics, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-319-26324-3_42

Download citation

Publish with us

Policies and ethics