Skip to main content

Preserving the Mediterranean Diet Through Holistic Strategies for the Conservation of Traditional Farming Systems

  • Chapter
  • First Online:
Book cover Biocultural Diversity in Europe

Part of the book series: Environmental History ((ENVHIS,volume 5))

Abstract

The Mediterranean diet is described by the UNESCO Cultural Heritage of Humanity website (http://www.unesco.org/culture/ich/en/RL/00884) as encompassing more than just food of the various cultures. These diets are embedded in bio-cultural landscapes that are at risk from global markets, industrial agriculture, invasive species and climate change, and yet little research aimed at conserving this Mediterranean agricultural heritage is being conducted. A focus on preserving traditional Mediterranean agricultural systems provides unique opportunities to link UNESCO-SCBD’s Joint Programme on Biological and Cultural Diversity (http://www.cbd.int/lbcd/) and FAO’s Globally Important Agricultural Heritage Systems initiative (GIAHS, http://www.fao.org/giahs/) with the goal of developing strategies and policy to preserve this heritage and the food production systems that are its basis for future generations. An important step in this direction is the development of holistic ecosystem-level assessments of the stability and resilience of traditional Mediterranean farming systems to evolving global change including climate change and shifting economic patterns and associated landscape transformations. A holistic approach is an important step to ensure ecologically sustainable development, conserve cultural identities, improve farming community livelihood, preserve agro-biodiversity and ensure the continued provision of vital ecosystem services for humanity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessandri A, De Felice M, Zeng N et al (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci Rep 4:7211. doi:10.1038/srep07211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altieri MA (2008) Small farms as a planetary ecological asset: five key reasons why we should support the revitalisation of small farms in the global south. Third World Network, Penang, Malaysia

    Google Scholar 

  • Altieri MA, Koohafkan P (2008) Enduring farms: climate change, smallholders and traditional farming communities. Third World Network, Penang, Malaysia

    Google Scholar 

  • Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2013) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Change. doi:10.1007/s10584-013-0909-y

    Google Scholar 

  • Altieri MA, Letourneau DK, Davis JR (1983) Developing sustainable agroecosystems. Bioscience 33:45–49

    Article  Google Scholar 

  • Altieri MA, Lana MA, Bittencourt HV et al (2011) Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil. J Sustain Agric 35:855–869. doi:10.1080/10440046.2011.588998

    Article  Google Scholar 

  • Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13

    Article  Google Scholar 

  • Altieri MA, Koohafkan P, Nicholls C (2014) Strengthening resilience of modern farming systems: a key prerequisite for sustainable agricultural production in an era of climate change. Third World Network Brief Paper 70. http://www.twn.my/title2/briefing_papers/No70.pdf

  • Artale V, Calmanti S, Carillo A et al (2010) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740. doi:10.1007/s00382-009-0691-8

    Article  Google Scholar 

  • Bagella S, Caria MC, Farris E, et al (2014a) Traditional land uses enhanced plant biodiversity in a Mediterranean agro-silvo-pastoral system. Plant Biosyst. doi:10.1080/11263504.2014.943319

    Google Scholar 

  • Bagella S, Filigheddu R, Caria MC et al (2014b) Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms. C R Biol 337:717–724. doi:10.1016/j.crvi.2014.09.005

    Article  PubMed  Google Scholar 

  • Batjes NH (1996) Global assessment of land vulnerability to water erosion on a 1/2° by 1/2° grid. Land Degrad Dev 7:353–365. doi:10.1002/(SICI)1099-145X(199612)7:4<353:AID-LDR239>3.0.CO;2-N

    Article  Google Scholar 

  • Beddington JR, Asaduzzaman M, Clark ME et al (2012) What next for agriculture after Durban? Science 335:289–290

    Article  CAS  PubMed  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi:10.1016/S0169-5347(03)00011-9

    Article  Google Scholar 

  • Bertolotto C, Pisanelli A, Cannata F (1995) Pratiche agroforestali nella regione Umbria. Monti E Boschi 46:5–11

    Google Scholar 

  • Blondel J (2006) The “design” of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  • Blondel J, Aronson J (1995) Biodiversity and ecosystem function in the mediterranean basin: human and non-human determinants. In: Richardson DDM, Davis DGW (eds) Mediterr.-Type Ecosyst. Springer, Berlin, pp 43–119

    Chapter  Google Scholar 

  • Bugalho MN, Caldeira MC, Pereira JS et al (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286

    Article  Google Scholar 

  • Calvente R, Cano C, Ferrol N et al (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19

    Article  Google Scholar 

  • Capone R, Iannetta M, El Bilali H et al (2013) A preliminary assessment of the environmental sustainability of the current Italian dietary pattern: water footprint related to food consumption. J Food Nutr Res 1:59–67

    Google Scholar 

  • Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992

    Article  CAS  PubMed  Google Scholar 

  • Comis D (2002) Glomalin: hiding place for a third of the world’s stored soil carbon. Agric Res 50:4–7

    Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169. doi:10.1146/annurev.ento.54.110807.090553

    Article  CAS  PubMed  Google Scholar 

  • Dawson T, Fry R (1998) Agriculture in nature’s image. Trends Ecol Evol 13:50–51

    Article  CAS  PubMed  Google Scholar 

  • de Graaff J, Duarte F, Fleskens L, De Figueiredo T (2010) The future of olive groves on sloping land and ex-ante assessment of cross compliance for erosion control. Land Use Policy 27:33–41

    Article  Google Scholar 

  • De Graaff J, Kessler A, Duarte F (2011) Financial consequences of cross-compliance and flat-rate-per-ha subsidies: the case of olive farmers on sloping land. Land Use Policy 28:388–394

    Article  Google Scholar 

  • Dell’Aquila A, Calmanti S, Ruti P et al (2012) Effects of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean region. Clim Res 52:135–157

    Article  Google Scholar 

  • Diffenbaugh N, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Change 114:813–822

    Article  PubMed Central  PubMed  Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706. doi:10.1029/2007GL030000

    Article  Google Scholar 

  • Eichhorn MP, Paris P, Herzog F et al (2006) Silvoarable systems in europe—past, present and future prospects. Agrofor Syst 67:29–50. doi:10.1007/s10457-005-1111-7

    Article  Google Scholar 

  • Emran M, Gispert M, Pardini G (2012) Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur J Soil Sci 63:637–649. doi:10.1111/j.1365-2389.2012.01493.x

    Article  CAS  Google Scholar 

  • ETC action group on E (2009) Who will feed us? Questions for the food and climate crises. ETC Commun 102. http://www.etcgroup.org/content/who–will–feed–us

  • Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J Ecol 64:293–308

    Article  CAS  Google Scholar 

  • Ewel J, Benedict F, Berish C et al (1982) Leaf area, light transmission, roots and leaf damage in nine tropical plant communities. Agro-Ecosyst 7:305–326

    Article  Google Scholar 

  • FAO F, AO of the UN (2001) Global ecological zoning for the global forest resources assessment 2000: final report. Working Paper 56. FAO, Rome, Italy

    Google Scholar 

  • Fleskens L, de Graaff J (2010) Conserving natural resources in olive orchards on sloping land: alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures. Agric Syst 103:521–534. doi:10.1016/j.agsy.2010.05.005

    Article  Google Scholar 

  • García-Orenes F, Roldán A, Mataix-Solera J et al (2012) Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use Manag 28:571–579. doi:10.1111/j.1475-2743.2012.00451.x

    Article  Google Scholar 

  • Geeson N, Brandt CJ, Thornes JB (2002) Mediterranean desertification: a mosaic of processes and responses. Wiley, Chichester, England

    Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M et al (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob Planet Change 68:209–224

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Gispert M, Emran M, Pardini G et al (2013) The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma 202–203:51–61. doi:10.1016/j.geoderma.2013.03.012

    Article  Google Scholar 

  • Gómez-Campo C (1985) Plant conservation in the Mediterranean area. W. Junk Publishers, Dordrecht

    Google Scholar 

  • GRASS Development Team (2014) Geographic Resources Analysis Support System (GRASS) Software, Version 6.4. Open Source Geospatial Foundation. http://grass.osgeo.org

  • Grove AT, Rackham O (2003) The Nature of Mediterranean Europe: an ecological history. Yale University Press, New Haven

    Google Scholar 

  • Gutierrez AP (1996) Applied population ecology: a supply-demand approach. Wiley, New York

    Google Scholar 

  • Gutierrez AP, Mills NJ, Schreiber SJ, Ellis CK (1994) A physiologically based tritrophic perspective on bottom-up-top-down regulation of populations. Ecology 75:2227–2242

    Article  Google Scholar 

  • Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Change 95:195–217. doi:10.1007/s10584-008-9528-4

    Article  Google Scholar 

  • Halstead P (1987) Traditional and ancient rural economy in mediterranean europe: plus ça change? J Hell Stud 107:77–87. doi:10.2307/630071

    Article  Google Scholar 

  • Hong S-K, Bogaert J, Min Q (eds) (2014) Biocultural landscapes: diversity, functions and values. Springer, Dordrecht

    Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Joffre R, Vacher J, de los Llanos C, Long G (1988) The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6:71–96. doi:10.1007/BF02344747

    Article  Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci 111:4001–4006. doi:10.1073/pnas.1313490111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kizos T, Koulouri M (2010) Same land cover, same land use at the large scale, different landscapes at the small scale: landscape change in olive plantations on Lesvos island, Greece. Landsc Res 35:449–467. doi:10.1080/01426390802048297

    Article  Google Scholar 

  • Koohafkan P (2009) Conservation and adaptive management of globally important agricultural heritage systems (GIAHS). Resour Sci 31:4–9

    Google Scholar 

  • Koohafkan P, Altieri MA (2011) Globally important agricultural heritage systems: a legacy for the future. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Koohafkan P, De La Cruz MJ (2011) Conservation and adaptive management of globally important agricultural heritage systems (GIAHS). J Resour Ecol 2:22–28

    Google Scholar 

  • Koohafkan P, Altieri MA, Gimenez EH (2012) Green agriculture: foundations for biodiverse, resilient and productive agricultural systems. Int J Agric Sustain 10:61–75

    Article  Google Scholar 

  • Kuhnlein HV, Receveur O (1996) Dietary change and traditional food systems of indigenous peoples. Annu Rev Nutr 16:417–442

    Article  CAS  PubMed  Google Scholar 

  • Lansing JS, Kremer JN (2011) Rice, fish, and the planet. Proc Natl Acad Sci USA 108:19841–19842. doi:10.1073/pnas.1117707109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lelle MA, Gold MA (1994) Agroforestry systems for temperate climates: lessons from Roman Italy. For Conserv Hist 38:118–126

    Article  Google Scholar 

  • Loumou A, Giourga C (2003) Olive groves: “The life and identity of the Mediterranean”. Agric Hum Values 20:87–95

    Article  Google Scholar 

  • Lüttge U (2010) Runoff-rainwater for sustainable desert farming. In: Ramawat KG (ed) Desert plants biolology and biotechnology. Springer, Berlin, pp 461–477

    Chapter  Google Scholar 

  • Lybbert TJ, Elabed G (2013) An elixir for development? Olive oil policies and poverty alleviation in the Middle East and North Africa. Dev Policy Rev 31:485–506

    Article  Google Scholar 

  • MacMillan T, Benton TG (2014) Agriculture: engage farmers in research. Nature 509:25–27. doi:10.1038/509025a

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Torres ME, Rosset PM (2014) Diálogo de saberes in La Vía Campesina: food sovereignty and agroecology. J Peasant Stud 41:979–997. doi:10.1080/03066150.2013.872632

    Article  Google Scholar 

  • McNeely JA (2004) Nature versus nurture: managing relationships between forests, agroforestry and wild biodiversity. Agrofor Syst 61–62:155–165. doi:10.1023/B:AGFO.0000028996.92553.ea

    Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680–19685. doi:10.1073/pnas.0701855104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mtaita TA, Manqwiro BK, Mphuru AN (2001) The role of horticulture plants in combating desertification. In: Pasternak D, Schlissel A (eds) Combating desertification plants. Kluwer Academic/Plenum Publishers, New York, pp 33–43

    Chapter  Google Scholar 

  • Neteler M (2010) Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens 2:333–351

    Article  Google Scholar 

  • Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose Open Source GIS. Environ Model Softw 31:124–130

    Article  Google Scholar 

  • Nicholls CI, Altieri MA (2012) Ecologically based food production systems for the XXI century. Agroecología 6:29–37

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note, Second revised edition edn. International soil reference and information centre, United Nations Environment Programme, Wageningen and Nairobi

    Google Scholar 

  • Papanastasis VP, Mantzanas K, Dini-Papanastasi O, Ispikoudis I (2009) Traditional agroforestry systems and their evolution in Greece. In: Rigueiro-Rodróguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe: current status and future prospects. Springer, Netherlands, pp 89–109

    Google Scholar 

  • Pardini G, Gispert MA (2013) Soil quality assessment through a multi-approach analysis in soils of abandoned terraced land in NE Spain. Cuad Investig Geográfica 38:7–30

    Article  Google Scholar 

  • Pasternak D (2001) Combating poverty with plants. In: Pasternak D, Schlissel A (eds) Combating desertification plants. Kluwer Academic/Plenum Publishers, New York, USA, pp 17–30

    Chapter  Google Scholar 

  • Pasternak D, Schlissel A (2001) Combating desertification with plants. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Ponti L, Gutierrez AP, Basso B et al (2013) Olive agroecosystems in the Mediterranean Basin: multitrophic analysis of climate effects with process-based representation of soil water balance. Procedia Environ Sci 19:122–131. doi:10.1016/j.proenv.2013.06.014

    Article  Google Scholar 

  • Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci 111:5598–5603. doi:10.1073/pnas.1314437111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ponti L, Gutierrez AP, Altieri MA (2015) Holistic approach in invasive species research: the case of the tomato leaf miner in the Mediterranean Basin. Agroecol Sustain Food Syst. doi:10.1080/21683565.2014.990074

    Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B Biol Sci 363:447–465. doi:10.1098/rstb.2007.2163

    Article  Google Scholar 

  • Ramachandran Nair PK, Nair VD, Mohan Kumar B, Showalter JM (2010) Carbon sequestration in agroforestry systems (chapter five). In: Sparks DL (ed) Advances in agronomy. Academic Press, Waltham, pp 237–307

    Google Scholar 

  • Regev U, Gutierrez AP, Schreiber SJ, Zilberman D (1998) Biological and economic foundations of renewable resource exploitation. Ecol Econ 26:227–242

    Article  Google Scholar 

  • Reich P, Eswaran H, Beinroth F (2001) Global dimensions of vulnerability to wind and water erosion. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting, 24–29 May 1999, West Lafayette IN. International Soil Conservation Organization, United States Department of Agriculture Agricultural Research Service National Soil Erosion Research Laboratory, and Purdue University, West Lafayette, IN, USA, Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, pp 838–846

    Google Scholar 

  • Renfrew JM (1973) Palaeoethnobotany: the prehistoric food plants of the Near East and Europe. Methuen, London

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rodríguez AR, McAdam J, Mosquera-Losada MR (2009) Agroforestry in Europe: current status and future prospects. Springer Science & Business Media

    Google Scholar 

  • Rogé P, Friedman AR, Astier M, Altieri MA (2014) Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta region of Oaxaca, Mexico. Agroecol Sustain Food Syst 38:786–811. doi:10.1080/21683565.2014.900842

    Article  Google Scholar 

  • Rosenzweig C, Tubiello FN (1997) Impacts of global climate change on Mediterranean agrigulture: current methodologies and future directions. Mitig Adapt Strateg Glob Change 1:219–232

    Article  Google Scholar 

  • Rosset P (2011) Food sovereignty and alternative paradigms to confront land grabbing and the food and climate crises. Development 54:21–30

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  PubMed  Google Scholar 

  • Smith J, Pearce BD, Wolfe MS (2013) Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew Agric Food Syst 28:80–92. doi:10.1017/S1742170511000585

    Article  Google Scholar 

  • Sonneveld BGJS, Dent DL (2009) How good is GLASOD? J Environ Manage 90:274–283. doi:10.1016/j.jenvman.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  • Souissi I, Temani N, Belhouchette H (2013) Vulnerability of mediterranean agricultural systems to climate: from regional to field scale analysis. In: Pielke RA (ed) Climate vulnerability: understanding and addressing threats to essential resources. Academic Press, Amsterdam, pp 89–103

    Chapter  Google Scholar 

  • Terral J-F, Alonso N, Chatti N et al (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77

    Article  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture—sustainable by nature. Curr Opin Environ Sustain 8:53–61. doi:10.1016/j.cosust.2014.08.006

    Article  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc B Biol Sci 365:2025–2034. doi:10.1098/rstb.2010.0037

    Article  Google Scholar 

  • Vanwalleghem T, Amate JI, de Molina MG et al (2011) Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric Ecosyst Environ 142:341–351. doi:10.1016/j.agee.2011.06.003

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No 537, U.S. Department of Agriculture, Washington DC 62

    Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107. doi:10.1023/A:1004347701584

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203. doi:10.1007/BF00012053

    Article  CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829. doi:10.2136/sssaj1999.6361825x

    Article  CAS  Google Scholar 

  • Yasuda Y (1997) The raise and fall of olive cultivation in Northwestern Syria: palaeoecological study of Tell Mastuma. Jpn Rev 8:251–273

    Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187:319–327. doi:10.1126/science.187.4174.319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Guido Bongi (Emeritus Director of Research, Italian National Research Council) for useful discussions on olive and climate change in the Mediterranean Basin including long-term effects on soil fertility mediated by glomalin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ponti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ponti, L., Gutierrez, A.P., Altieri, M.A. (2016). Preserving the Mediterranean Diet Through Holistic Strategies for the Conservation of Traditional Farming Systems. In: Agnoletti, M., Emanueli, F. (eds) Biocultural Diversity in Europe. Environmental History, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-26315-1_24

Download citation

Publish with us

Policies and ethics