Preserving the Mediterranean Diet Through Holistic Strategies for the Conservation of Traditional Farming Systems

  • Luigi PontiEmail author
  • Andrew Paul Gutierrez
  • Miguel A. Altieri
Part of the Environmental History book series (ENVHIS, volume 5)


The Mediterranean diet is described by the UNESCO Cultural Heritage of Humanity website ( as encompassing more than just food of the various cultures. These diets are embedded in bio-cultural landscapes that are at risk from global markets, industrial agriculture, invasive species and climate change, and yet little research aimed at conserving this Mediterranean agricultural heritage is being conducted. A focus on preserving traditional Mediterranean agricultural systems provides unique opportunities to link UNESCO-SCBD’s Joint Programme on Biological and Cultural Diversity ( and FAO’s Globally Important Agricultural Heritage Systems initiative (GIAHS, with the goal of developing strategies and policy to preserve this heritage and the food production systems that are its basis for future generations. An important step in this direction is the development of holistic ecosystem-level assessments of the stability and resilience of traditional Mediterranean farming systems to evolving global change including climate change and shifting economic patterns and associated landscape transformations. A holistic approach is an important step to ensure ecologically sustainable development, conserve cultural identities, improve farming community livelihood, preserve agro-biodiversity and ensure the continued provision of vital ecosystem services for humanity.


Traditional mediterranean farming systems Agricultural heritage systems Physiologically based demographic models (PBDMs) Global change Resilience to climate change Bio-cultural diversity 



We thank Dr. Guido Bongi (Emeritus Director of Research, Italian National Research Council) for useful discussions on olive and climate change in the Mediterranean Basin including long-term effects on soil fertility mediated by glomalin.


  1. Alessandri A, De Felice M, Zeng N et al (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci Rep 4:7211. doi: 10.1038/srep07211 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Altieri MA (2008) Small farms as a planetary ecological asset: five key reasons why we should support the revitalisation of small farms in the global south. Third World Network, Penang, MalaysiaGoogle Scholar
  3. Altieri MA, Koohafkan P (2008) Enduring farms: climate change, smallholders and traditional farming communities. Third World Network, Penang, MalaysiaGoogle Scholar
  4. Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430CrossRefGoogle Scholar
  5. Altieri MA, Nicholls CI (2013) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Change. doi: 10.1007/s10584-013-0909-y
  6. Altieri MA, Letourneau DK, Davis JR (1983) Developing sustainable agroecosystems. Bioscience 33:45–49CrossRefGoogle Scholar
  7. Altieri MA, Lana MA, Bittencourt HV et al (2011) Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil. J Sustain Agric 35:855–869. doi: 10.1080/10440046.2011.588998 CrossRefGoogle Scholar
  8. Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13CrossRefGoogle Scholar
  9. Altieri MA, Koohafkan P, Nicholls C (2014) Strengthening resilience of modern farming systems: a key prerequisite for sustainable agricultural production in an era of climate change. Third World Network Brief Paper 70.
  10. Artale V, Calmanti S, Carillo A et al (2010) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740. doi: 10.1007/s00382-009-0691-8 CrossRefGoogle Scholar
  11. Bagella S, Caria MC, Farris E, et al (2014a) Traditional land uses enhanced plant biodiversity in a Mediterranean agro-silvo-pastoral system. Plant Biosyst. doi: 10.1080/11263504.2014.943319
  12. Bagella S, Filigheddu R, Caria MC et al (2014b) Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms. C R Biol 337:717–724. doi: 10.1016/j.crvi.2014.09.005 CrossRefPubMedGoogle Scholar
  13. Batjes NH (1996) Global assessment of land vulnerability to water erosion on a 1/2° by 1/2° grid. Land Degrad Dev 7:353–365. doi: 10.1002/(SICI)1099-145X(199612)7:4<353:AID-LDR239>3.0.CO;2-N CrossRefGoogle Scholar
  14. Beddington JR, Asaduzzaman M, Clark ME et al (2012) What next for agriculture after Durban? Science 335:289–290CrossRefPubMedGoogle Scholar
  15. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi: 10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  16. Bertolotto C, Pisanelli A, Cannata F (1995) Pratiche agroforestali nella regione Umbria. Monti E Boschi 46:5–11Google Scholar
  17. Blondel J (2006) The “design” of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729CrossRefGoogle Scholar
  18. Blondel J, Aronson J (1995) Biodiversity and ecosystem function in the mediterranean basin: human and non-human determinants. In: Richardson DDM, Davis DGW (eds) Mediterr.-Type Ecosyst. Springer, Berlin, pp 43–119CrossRefGoogle Scholar
  19. Bugalho MN, Caldeira MC, Pereira JS et al (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286CrossRefGoogle Scholar
  20. Calvente R, Cano C, Ferrol N et al (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19CrossRefGoogle Scholar
  21. Capone R, Iannetta M, El Bilali H et al (2013) A preliminary assessment of the environmental sustainability of the current Italian dietary pattern: water footprint related to food consumption. J Food Nutr Res 1:59–67Google Scholar
  22. Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992CrossRefPubMedGoogle Scholar
  23. Comis D (2002) Glomalin: hiding place for a third of the world’s stored soil carbon. Agric Res 50:4–7Google Scholar
  24. Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169. doi: 10.1146/annurev.ento.54.110807.090553 CrossRefPubMedGoogle Scholar
  25. Dawson T, Fry R (1998) Agriculture in nature’s image. Trends Ecol Evol 13:50–51CrossRefPubMedGoogle Scholar
  26. de Graaff J, Duarte F, Fleskens L, De Figueiredo T (2010) The future of olive groves on sloping land and ex-ante assessment of cross compliance for erosion control. Land Use Policy 27:33–41CrossRefGoogle Scholar
  27. De Graaff J, Kessler A, Duarte F (2011) Financial consequences of cross-compliance and flat-rate-per-ha subsidies: the case of olive farmers on sloping land. Land Use Policy 28:388–394CrossRefGoogle Scholar
  28. Dell’Aquila A, Calmanti S, Ruti P et al (2012) Effects of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean region. Clim Res 52:135–157CrossRefGoogle Scholar
  29. Diffenbaugh N, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Change 114:813–822PubMedCentralCrossRefPubMedGoogle Scholar
  30. Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706. doi: 10.1029/2007GL030000 CrossRefGoogle Scholar
  31. Eichhorn MP, Paris P, Herzog F et al (2006) Silvoarable systems in europe—past, present and future prospects. Agrofor Syst 67:29–50. doi: 10.1007/s10457-005-1111-7 CrossRefGoogle Scholar
  32. Emran M, Gispert M, Pardini G (2012) Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur J Soil Sci 63:637–649. doi: 10.1111/j.1365-2389.2012.01493.x CrossRefGoogle Scholar
  33. ETC action group on E (2009) Who will feed us? Questions for the food and climate crises. ETC Commun 102.–will–feed–us
  34. Ewel JJ (1976) Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J Ecol 64:293–308CrossRefGoogle Scholar
  35. Ewel J, Benedict F, Berish C et al (1982) Leaf area, light transmission, roots and leaf damage in nine tropical plant communities. Agro-Ecosyst 7:305–326CrossRefGoogle Scholar
  36. FAO F, AO of the UN (2001) Global ecological zoning for the global forest resources assessment 2000: final report. Working Paper 56. FAO, Rome, ItalyGoogle Scholar
  37. Fleskens L, de Graaff J (2010) Conserving natural resources in olive orchards on sloping land: alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures. Agric Syst 103:521–534. doi: 10.1016/j.agsy.2010.05.005 CrossRefGoogle Scholar
  38. García-Orenes F, Roldán A, Mataix-Solera J et al (2012) Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use Manag 28:571–579. doi: 10.1111/j.1475-2743.2012.00451.x CrossRefGoogle Scholar
  39. Geeson N, Brandt CJ, Thornes JB (2002) Mediterranean desertification: a mosaic of processes and responses. Wiley, Chichester, EnglandGoogle Scholar
  40. Giannakopoulos C, Le Sager P, Bindi M et al (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob Planet Change 68:209–224CrossRefGoogle Scholar
  41. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi: 10.1029/2006GL025734 CrossRefGoogle Scholar
  42. Gispert M, Emran M, Pardini G et al (2013) The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma 202–203:51–61. doi: 10.1016/j.geoderma.2013.03.012 CrossRefGoogle Scholar
  43. Gómez-Campo C (1985) Plant conservation in the Mediterranean area. W. Junk Publishers, DordrechtGoogle Scholar
  44. GRASS Development Team (2014) Geographic Resources Analysis Support System (GRASS) Software, Version 6.4. Open Source Geospatial Foundation.
  45. Grove AT, Rackham O (2003) The Nature of Mediterranean Europe: an ecological history. Yale University Press, New HavenGoogle Scholar
  46. Gutierrez AP (1996) Applied population ecology: a supply-demand approach. Wiley, New YorkGoogle Scholar
  47. Gutierrez AP, Mills NJ, Schreiber SJ, Ellis CK (1994) A physiologically based tritrophic perspective on bottom-up-top-down regulation of populations. Ecology 75:2227–2242CrossRefGoogle Scholar
  48. Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Change 95:195–217. doi: 10.1007/s10584-008-9528-4 CrossRefGoogle Scholar
  49. Halstead P (1987) Traditional and ancient rural economy in mediterranean europe: plus ça change? J Hell Stud 107:77–87. doi: 10.2307/630071 CrossRefGoogle Scholar
  50. Hong S-K, Bogaert J, Min Q (eds) (2014) Biocultural landscapes: diversity, functions and values. Springer, DordrechtGoogle Scholar
  51. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  52. Joffre R, Vacher J, de los Llanos C, Long G (1988) The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6:71–96. doi: 10.1007/BF02344747 CrossRefGoogle Scholar
  53. Khoury CK, Bjorkman AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci 111:4001–4006. doi: 10.1073/pnas.1313490111 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Kizos T, Koulouri M (2010) Same land cover, same land use at the large scale, different landscapes at the small scale: landscape change in olive plantations on Lesvos island, Greece. Landsc Res 35:449–467. doi: 10.1080/01426390802048297 CrossRefGoogle Scholar
  55. Koohafkan P (2009) Conservation and adaptive management of globally important agricultural heritage systems (GIAHS). Resour Sci 31:4–9Google Scholar
  56. Koohafkan P, Altieri MA (2011) Globally important agricultural heritage systems: a legacy for the future. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  57. Koohafkan P, De La Cruz MJ (2011) Conservation and adaptive management of globally important agricultural heritage systems (GIAHS). J Resour Ecol 2:22–28Google Scholar
  58. Koohafkan P, Altieri MA, Gimenez EH (2012) Green agriculture: foundations for biodiverse, resilient and productive agricultural systems. Int J Agric Sustain 10:61–75CrossRefGoogle Scholar
  59. Kuhnlein HV, Receveur O (1996) Dietary change and traditional food systems of indigenous peoples. Annu Rev Nutr 16:417–442CrossRefPubMedGoogle Scholar
  60. Lansing JS, Kremer JN (2011) Rice, fish, and the planet. Proc Natl Acad Sci USA 108:19841–19842. doi: 10.1073/pnas.1117707109 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Lelle MA, Gold MA (1994) Agroforestry systems for temperate climates: lessons from Roman Italy. For Conserv Hist 38:118–126CrossRefGoogle Scholar
  62. Loumou A, Giourga C (2003) Olive groves: “The life and identity of the Mediterranean”. Agric Hum Values 20:87–95CrossRefGoogle Scholar
  63. Lüttge U (2010) Runoff-rainwater for sustainable desert farming. In: Ramawat KG (ed) Desert plants biolology and biotechnology. Springer, Berlin, pp 461–477CrossRefGoogle Scholar
  64. Lybbert TJ, Elabed G (2013) An elixir for development? Olive oil policies and poverty alleviation in the Middle East and North Africa. Dev Policy Rev 31:485–506CrossRefGoogle Scholar
  65. MacMillan T, Benton TG (2014) Agriculture: engage farmers in research. Nature 509:25–27. doi: 10.1038/509025a CrossRefPubMedGoogle Scholar
  66. Martínez-Torres ME, Rosset PM (2014) Diálogo de saberes in La Vía Campesina: food sovereignty and agroecology. J Peasant Stud 41:979–997. doi: 10.1080/03066150.2013.872632 CrossRefGoogle Scholar
  67. McNeely JA (2004) Nature versus nurture: managing relationships between forests, agroforestry and wild biodiversity. Agrofor Syst 61–62:155–165. doi: 10.1023/B:AGFO.0000028996.92553.ea Google Scholar
  68. Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680–19685. doi: 10.1073/pnas.0701855104 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Mtaita TA, Manqwiro BK, Mphuru AN (2001) The role of horticulture plants in combating desertification. In: Pasternak D, Schlissel A (eds) Combating desertification plants. Kluwer Academic/Plenum Publishers, New York, pp 33–43CrossRefGoogle Scholar
  70. Neteler M (2010) Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens 2:333–351CrossRefGoogle Scholar
  71. Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose Open Source GIS. Environ Model Softw 31:124–130CrossRefGoogle Scholar
  72. Nicholls CI, Altieri MA (2012) Ecologically based food production systems for the XXI century. Agroecología 6:29–37Google Scholar
  73. Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note, Second revised edition edn. International soil reference and information centre, United Nations Environment Programme, Wageningen and NairobiGoogle Scholar
  74. Papanastasis VP, Mantzanas K, Dini-Papanastasi O, Ispikoudis I (2009) Traditional agroforestry systems and their evolution in Greece. In: Rigueiro-Rodróguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe: current status and future prospects. Springer, Netherlands, pp 89–109Google Scholar
  75. Pardini G, Gispert MA (2013) Soil quality assessment through a multi-approach analysis in soils of abandoned terraced land in NE Spain. Cuad Investig Geográfica 38:7–30CrossRefGoogle Scholar
  76. Pasternak D (2001) Combating poverty with plants. In: Pasternak D, Schlissel A (eds) Combating desertification plants. Kluwer Academic/Plenum Publishers, New York, USA, pp 17–30CrossRefGoogle Scholar
  77. Pasternak D, Schlissel A (2001) Combating desertification with plants. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  78. Ponti L, Gutierrez AP, Basso B et al (2013) Olive agroecosystems in the Mediterranean Basin: multitrophic analysis of climate effects with process-based representation of soil water balance. Procedia Environ Sci 19:122–131. doi: 10.1016/j.proenv.2013.06.014 CrossRefGoogle Scholar
  79. Ponti L, Gutierrez AP, Ruti PM, Dell’Aquila A (2014) Fine scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci 111:5598–5603. doi: 10.1073/pnas.1314437111 PubMedCentralCrossRefPubMedGoogle Scholar
  80. Ponti L, Gutierrez AP, Altieri MA (2015) Holistic approach in invasive species research: the case of the tomato leaf miner in the Mediterranean Basin. Agroecol Sustain Food Syst. doi: 10.1080/21683565.2014.990074
  81. Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B Biol Sci 363:447–465. doi: 10.1098/rstb.2007.2163 CrossRefGoogle Scholar
  82. Ramachandran Nair PK, Nair VD, Mohan Kumar B, Showalter JM (2010) Carbon sequestration in agroforestry systems (chapter five). In: Sparks DL (ed) Advances in agronomy. Academic Press, Waltham, pp 237–307Google Scholar
  83. Regev U, Gutierrez AP, Schreiber SJ, Zilberman D (1998) Biological and economic foundations of renewable resource exploitation. Ecol Econ 26:227–242CrossRefGoogle Scholar
  84. Reich P, Eswaran H, Beinroth F (2001) Global dimensions of vulnerability to wind and water erosion. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting, 24–29 May 1999, West Lafayette IN. International Soil Conservation Organization, United States Department of Agriculture Agricultural Research Service National Soil Erosion Research Laboratory, and Purdue University, West Lafayette, IN, USA, Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, pp 838–846Google Scholar
  85. Renfrew JM (1973) Palaeoethnobotany: the prehistoric food plants of the Near East and Europe. Methuen, LondonGoogle Scholar
  86. Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363CrossRefGoogle Scholar
  87. Rodríguez AR, McAdam J, Mosquera-Losada MR (2009) Agroforestry in Europe: current status and future prospects. Springer Science & Business MediaGoogle Scholar
  88. Rogé P, Friedman AR, Astier M, Altieri MA (2014) Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta region of Oaxaca, Mexico. Agroecol Sustain Food Syst 38:786–811. doi: 10.1080/21683565.2014.900842 CrossRefGoogle Scholar
  89. Rosenzweig C, Tubiello FN (1997) Impacts of global climate change on Mediterranean agrigulture: current methodologies and future directions. Mitig Adapt Strateg Glob Change 1:219–232CrossRefGoogle Scholar
  90. Rosset P (2011) Food sovereignty and alternative paradigms to confront land grabbing and the food and climate crises. Development 54:21–30CrossRefGoogle Scholar
  91. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109CrossRefGoogle Scholar
  92. Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi: 10.1126/science.1115233 CrossRefPubMedGoogle Scholar
  93. Smith J, Pearce BD, Wolfe MS (2013) Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew Agric Food Syst 28:80–92. doi: 10.1017/S1742170511000585 CrossRefGoogle Scholar
  94. Sonneveld BGJS, Dent DL (2009) How good is GLASOD? J Environ Manage 90:274–283. doi: 10.1016/j.jenvman.2007.09.008 CrossRefPubMedGoogle Scholar
  95. Souissi I, Temani N, Belhouchette H (2013) Vulnerability of mediterranean agricultural systems to climate: from regional to field scale analysis. In: Pielke RA (ed) Climate vulnerability: understanding and addressing threats to essential resources. Academic Press, Amsterdam, pp 89–103CrossRefGoogle Scholar
  96. Terral J-F, Alonso N, Chatti N et al (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77CrossRefGoogle Scholar
  97. Tittonell P (2014) Ecological intensification of agriculture—sustainable by nature. Curr Opin Environ Sustain 8:53–61. doi: 10.1016/j.cosust.2014.08.006 CrossRefGoogle Scholar
  98. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc B Biol Sci 365:2025–2034. doi: 10.1098/rstb.2010.0037 CrossRefGoogle Scholar
  99. Vanwalleghem T, Amate JI, de Molina MG et al (2011) Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric Ecosyst Environ 142:341–351. doi: 10.1016/j.agee.2011.06.003 CrossRefGoogle Scholar
  100. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No 537, U.S. Department of Agriculture, Washington DC 62Google Scholar
  101. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107. doi: 10.1023/A:1004347701584 CrossRefGoogle Scholar
  102. Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203. doi: 10.1007/BF00012053 CrossRefGoogle Scholar
  103. Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63:1825–1829. doi: 10.2136/sssaj1999.6361825x CrossRefGoogle Scholar
  104. Yasuda Y (1997) The raise and fall of olive cultivation in Northwestern Syria: palaeoecological study of Tell Mastuma. Jpn Rev 8:251–273Google Scholar
  105. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187:319–327. doi: 10.1126/science.187.4174.319 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luigi Ponti
    • 1
    • 2
    Email author
  • Andrew Paul Gutierrez
    • 2
    • 3
  • Miguel A. Altieri
    • 4
  1. 1.Laboratorio Gestione Sostenibile degli Agro-ecosistemi, Unità Tecnica AgriENEA Centro Ricerche CasacciaRomeItaly
  2. 2.Center for the Analysis of Sustainable Agricultural SystemsKensingtonUSA
  3. 3.College of Natural ResourcesUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations