Advertisement

A Computational Measure of Saliency of the Shape of 3D Objects

  • Graciela LaraEmail author
  • Angélica De Antonio
  • Adriana Peña
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 405)

Abstract

The shape of an object is a basic characteristic that when attracts the viewers’ attention represents a salient feature. In this paper we propose a computational measure of saliency of the shape of 3D objects in virtual reality, based on the proportion of empty and full space within its bounding box. This measure of saliency is part of a computational model aimed to the selection of appropriate reference objects to facilitate the location of objects within a 3D virtual environment. An experiment was conducted to understand to which extent the proposed measure of saliency matches with the people’s subjective perception of saliency; results showed a good performance of the metric.

Keywords

3D objects Shape saliency Voxelization 

Notes

Acknowledgments

Graciela Lara holds a PROMEP scholarship in partnership with the UDG (UDG-685), Mexico. We also thank the students Adrián Calle Murillo, Roberto Mendoza Vasquez, and Álvaro Iturmendi Muñoz for their help in the implementation of the metric and the experimental software application and materials.

References

  1. 1.
    Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: Computer Vision and Pattern Recognition 2007, pp. 1–8. IEEE Minneapolis MN (2007)Google Scholar
  2. 2.
    Itti, L.: Quantitative Modelling of Perceptual Salience at Human Eye Position, vol. 14(4/5/6/7/8), pp. 959–984. Taylor & Francis Group Psychology Press Visual Cognition (2006)Google Scholar
  3. 3.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scence analysis. IEEE Trans Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998) (IEEE)Google Scholar
  4. 4.
    Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 996–1010 (2013) (IEEE)Google Scholar
  5. 5.
    Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: 2002 Proceedings Second International Conference GIScience, pp. 243–259. Springer Berlin Heidelberg, Boulder, CO, USA (2002)Google Scholar
  6. 6.
    Sampedro, M.J., Blanco, M., Ponte, D., Leirós, L.I.: Saliencia Perceptiva y Atención. In: La Atención (VI) Un enfoque pluridisciplinar. Edited by Añaños E, Estaún, S., Teresa MM. España: pp. 91–103, Universidad Autonoma de Barcelona (2010)Google Scholar
  7. 7.
    Kapur, S.: Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160(1), 91–103 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Lee, C.H., Varshney, A., Jacobs D.W.: Mesh saliency. In: ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH, pp. 659–666. ACM New York, USA (2005)Google Scholar
  9. 9.
    Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3D geometry. In; ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH, vol. 25(3), pp. 560–568. ACM (2006)Google Scholar
  10. 10.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graphics 25(1), 130–150 (2006) (ACM)Google Scholar
  11. 11.
    Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., Seidel, H-P.: Towards stable and salient multi-view representation of 3D shapes. In: IEEE International Conference on Shape Modeling and Applications (SMI’06): 2006, pp. 265–270. IEEE Matsushima (2006)Google Scholar
  12. 12.
    Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. Eurographics 27(2), 643–652 (2008)Google Scholar
  13. 13.
    Miao, Y., Feng, J.: Perceptual-saliency extremum lines for 3D shape illustration, Springer The Visual Computer, vol. 26(6–8), pp. 433–443. Springer, Berlin (2010)Google Scholar
  14. 14.
    Miao, Y., Feng. J., Pajarola, R.: Visual saliency guided normal enhancement technique for 3D shape depiction. Elsevier Computers & Graphics, vol. 35, pp. 706–712. Elsevier (2011)Google Scholar
  15. 15.
    Tao, P., Cao, J., Li, S., Liu, X,, Liu, L.: Mesh saliency via a ranking unsalient patches in a descriptor space. Elsevier Computer & Graphics, vol. 46, pp. 264–274. Elsevier (2015)Google Scholar
  16. 16.
    Shilane, P., Min, P., Kazhdan, M., Furkhouser, T.: The Princeton Shape Benchmark. In: IEEE Proceedings of the Shape Modeling International 2004, pp. 167–168. IEEE Washington, DC, USA (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Graciela Lara
    • 1
    Email author
  • Angélica De Antonio
    • 2
  • Adriana Peña
    • 1
  1. 1.CUCEI of the Universidad de GuadalajaraGuadalajaraMexico
  2. 2.Escuela Técnica Superior de Ingenieros Informático of the Universidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations