Skip to main content

WMAP Polarised Filaments

  • Chapter
  • First Online:
Diffuse Radio Foregrounds

Part of the book series: Springer Theses ((Springer Theses))

  • 346 Accesses

Abstract

At frequencies up to a few GHz, the total radio sky brightness is dominated by the diffuse Galactic synchrotron radiation, where cosmic rays (CR) electrons and positrons spiralling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is calculated using \(\mathrm {FWHM_{deconv}}=\sqrt{\mathrm {FWHM_{obs}} - 1^{\circ }}\), where \(\mathrm {FWHM_{obs}}\) is the measured width of the profile. The angular resolution of the maps is 1\(^{\circ }\).

References

  • Alves, M. I. R., et al. (2012). A derivation of the free-free emission on the Galactic plane between l= 20\(^{\circ }\). and 44\(^{\circ }\). MNRAS, 422, 2429–2443.

    Article  ADS  Google Scholar 

  • Bennett, C. L., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. ApJS, 208(20), 20.

    Article  ADS  Google Scholar 

  • Berkhuijsen, E. M. (1973). Galactic continuum loops and the diameter-surface brightness relation for supernova remnants. A & A, 24, 143–147.

    Google Scholar 

  • Berkhuijsen, E. M., Haslam, C. G. T., & Salter, C. J. (1971). Are the galactic loops supernova remnants? A & A, 14, 252–262.

    Google Scholar 

  • Bingham, R. G. (1967). “Magnetic fields in the galactic spurs”. In: MNRAS 137, p. 157.

    Google Scholar 

  • Bland-Hawthorn, J., & Cohen, M. (2003). The large-scale bipolar wind in the Galactic center. ApJ, 582, 246–256.

    Article  ADS  Google Scholar 

  • Borka, V. (2007). Spectral indices of Galactic radio loops between 1420, 820 and 408 MHz. MNRAS, 376, 634–644.

    Article  ADS  Google Scholar 

  • Breitschwerdt, D., McKenzie, J. F., & Voelk, H. J. (1991). Galactic winds. I: Cosmic ray and wave-driven winds from the Galaxy. A & A, 245, 79–98.

    Google Scholar 

  • Brown, R., Davies, R. D., & Hazard, C. (1960). A curious feature of the radio sky. The Observatory, 80, 191–198.

    ADS  Google Scholar 

  • Bunner, A. N. et al. (1972). Soft X-Rays from the Vicinity of the North Polar Spur. In: ApJ 172, p. L67.

    Google Scholar 

  • Burn, B. J. (1966). On the depolarization of discrete radio sources by Faraday dispersion. In: MNRAS 133, p. 67.

    Google Scholar 

  • Carretti, E., et al. (2013). Giant magnetized outflows from the centre of the Milky Way. Nature, 493, 66–69.

    Article  ADS  Google Scholar 

  • Chon, G., et al. (2004). Fast estimation of polarization power spectra using correlation functions. MNRAS, 350, 914–926.

    Article  ADS  Google Scholar 

  • Colomb, F. R., Poppel, W. G. L., & Heiles, C. (1980). Galactic HI at –b– ¿= \(10^{\circ }\). II. Photographic presentation of the combined Southern and Northern data. A & AS, 40, 47–55.

    Google Scholar 

  • Davies, R. D., et al. (2006). A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe. MNRAS, 370, 1125–1139.

    Article  ADS  Google Scholar 

  • Egger, R. J. (1995). “Loop I—an Active Superbubble”. In: The Physics of the Interstellar Medium and Intergalactic Medium. Ed. by A. Ferrara et al. Vol. 80. Astronomical Society of the Pacific Conference Series, p. 45.

    Google Scholar 

  • Egger, R. J., & Aschenbach, B. (1995). Interaction of the Loop I supershell with the Local Hot Bubble. A & A, 294, L25–L28.

    Google Scholar 

  • Finkbeiner, D. P. (2004). Microwave interstellar medium emission observed by the Wilkinson Microwave Anisotropy Probe. ApJ, 614, 186–193.

    Article  ADS  Google Scholar 

  • Frail, D. A. et al. (1996). “The Pulsar Wind Nebula around PSR B1853+01 in the Supernova Remnant W44”. In: ApJ 464, p. L165.

    Google Scholar 

  • Gold, B., et al. (2011). Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Galactic foreground emission. ApJS, 192(15), 15.

    Article  ADS  Google Scholar 

  • Guzmán, A. E., et al. (2011). All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz. A & A, 525(A138), A138.

    Google Scholar 

  • Haslam, C. G. T. et al. (1982). “A 408 MHz all-sky continuum survey. II—The atlas of contour maps”. In: A & AS 47, p. 1.

    Google Scholar 

  • Heiles, C. (1974). “An almost complete survey of 21 CM line radiation for —b— ¿= 10\(^{\circ }\). II. The accurate data on machine readable magnetic tape”. In: A & AS 14, p. 557.

    Google Scholar 

  • Heiles, C. (1984). HI shells, supershells, shell-like objects, and ’worms’. ApJS, 55, 585–595.

    Article  ADS  Google Scholar 

  • Heiles, C. (1998). “TheMagnetic Field Near the Local Bubble”. In: IAU Colloq. 166: The Local Bubble and Beyond. Ed. by D. Breitschwerdt, M. J. Freyberg, & J. Truemper. Vol. 506. Lecture Notes in Physics. Springer, Berlin, pp. 229–238.

    Google Scholar 

  • Heiles, C., et al. (1980). A new look at the north Polar Spur. ApJ, 242, 533–540.

    Article  ADS  Google Scholar 

  • Hinshaw, G., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. ApJS, 208(19), 19.

    Article  ADS  Google Scholar 

  • Jones, D. I., et al. (2012). Magnetic substructure in the Northern Fermi Bubble revealed by polarized microwave emission. ApJ, 747(L12), L12.

    Article  ADS  Google Scholar 

  • Jun, B.-I., & Jones, T. W. (1999). Radio emission from a Young Supernova Remnant interacting with an interstellar cloud: Magnetohydrodynamic simulation with relativistic electrons. ApJ, 511, 774–791.

    Article  ADS  Google Scholar 

  • Kalberla, P. M. W., et al. (2005). The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. A & A, 440, 775–782.

    Google Scholar 

  • Katayama, N., & Komatsu, E. (2011). Simple foreground cleaning algorithm for detecting primordial B-mode polarization of the cosmic microwave background. ApJ, 737(78), 78.

    Article  ADS  Google Scholar 

  • Kogut, A., et al. (2007). Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Foreground polarization. ApJ, 665, 335–362.

    Article  ADS  Google Scholar 

  • Koo, B.-C., Heiles, C., & Reach, W. T. (1992). Galactic worms. I—Catalog of worm candidates. ApJ, 390, 108–132.

    Article  ADS  Google Scholar 

  • Lallement, R., et al. (2003). 3D mapping of the dense interstellar gas around the Local Bubble. A & A, 411, 447–464.

    Google Scholar 

  • Landecker, T. L., et al. (1999). DA 530: A Supernova Remnant in a Stellar Wind Bubble. ApJ, 527, 866–878.

    Article  ADS  Google Scholar 

  • Large, M. I., Quigley, M. F. S., & Haslam, C. G. T. (1966). “A radio study of the north polar spur. II. A survey at low declinations”. In: MNRAS 131, p. 335.

    Google Scholar 

  • Large, M. I., Quigley, M. J. S., & Haslam, C. G. T. (1962). “A new feature of the radio sky”. In: MNRAS 124, p. 405.

    Google Scholar 

  • Lewis, A., Challinor, A., & Lasenby, A. (2000). Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models. ApJ, 538, 473–476.

    Article  ADS  Google Scholar 

  • López-Caniego, M., et al. (2009). Polarization of the WMAP point sources. ApJ, 705, 868–876.

    Google Scholar 

  • Mamajek, E. E. (2008). “On the distance to the Ophiuchus star-forming region”. In: Astronomische Nachrichten 329, p. 10.

    Google Scholar 

  • Mathewson, D. S., & Ford, V. L. (1970). Polarization measurements of stars in the Magellanic Clouds. AJ, 75, 778–784.

    Article  ADS  Google Scholar 

  • Mertsch, P., & Sarkar, S. (2013). Loops and spurs: The angular power spectrum of the Galactic synchrotron background. Journal of Cosmology and Astroparticle Physics, 6(041), 41.

    Article  ADS  Google Scholar 

  • Milogradov-Turin, J., & Uroišević, D. (1997). Geometry of large radio loops at 1420 MHz. Bulletin Astronomique de Belgrade, 155, 41–45.

    Google Scholar 

  • Oppermann, N., et al. (2012). An improved map of the Galactic Faraday sky. A & A, 542(A93), A93.

    Google Scholar 

  • Page, L., et al. (2007). Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Polarization analysis. ApJS, 170, 335–376.

    Article  ADS  Google Scholar 

  • Planck Collaboration et al. (2013). “Planck intermediate results. IX. Detection of the Galactic haze with Planck”. In: A & A 554, A139, A139.

    Google Scholar 

  • Preibisch, T., & Mamajek, E. (2008). “The Nearest OB Association: Scorpius-Centaurus (Sco OB2)”. In: Handbook of Star Forming Regions, Volume II. Ed. by B. Reipurth, p. 235.

    Google Scholar 

  • Puspitarini, L., & Lallement, R. (2012). Distance to northern high-latitude HI shells. A & A, 545(A21), A21.

    Google Scholar 

  • Quigley, M. J. S., & Haslam, C. G. T. (1965). Structure of the radio continuum background at high Galactic latitudes. Nature, 208, 741–743.

    Article  ADS  Google Scholar 

  • Reynolds, S. P., Gaensler, B. M., & Bocchino, F. (2012). “Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae”. In: Space Sci. Rev. 166, pp. 231–261.

    Google Scholar 

  • Reynoso, E. M. et al. (1997). “A VLA Study of the Expansion of Tycho’s Supernova Remnant”. In: ApJ 491, p. 816.

    Google Scholar 

  • Sofue, Y. (1977). Propagation of magnetohydrodynamic waves from the galactic center: Origin of the 3-kpc arm and the North Polar Spur. A & A, 60, 327–336.

    Google Scholar 

  • Sofue, Y. (1988). Vertical radio structures out of the Galactic plane and activities of the Galaxy. PASJ, 40, 567–579.

    ADS  Google Scholar 

  • Sofue, Y., Hamajima, K., & Fujimoto, M. (1974). “Radio Spurs and Spiral Structure of the Galaxy, II. On the Supernova Remnant Hypothesis for Spurs”. In: PASJ 26, p. 399.

    Google Scholar 

  • Sofue, Y., Reich, W., & Reich, P. (1989). The Galactic center spur: A jet from the nucleus? ApJ, 341, L47–L49.

    Article  ADS  Google Scholar 

  • Spoelstra, T. A. T. (1971). “A Survey of Linear Polarization at 1415 MHz. II. Discussion of Results for the North Polar Spur”. In: A & A 13, p. 237.

    Google Scholar 

  • Spoelstra, T. A. T. (1972). “A Survey of Linear Polarization at 1415 MHz. IV. Discussion of the Results for the Galactic Spurs”. In: A & A 21, p. 61.

    Google Scholar 

  • Spoelstra, T. A. T. (1973). “Galactic Loops as Supernova Remnants in the Local Galactic Magnetic Field”. In: A & A 24, p. 149.

    Google Scholar 

  • Strong, A. W., Orlando, E., & Jaffe, T. R. (2011). The interstellar cosmic-ray electron spectrum from synchrotron radiation and direct measurements. A & A, 534(A54), A54.

    Google Scholar 

  • Su, M., Slatyer, T. R., & Finkbeiner, D. P. (2010). Giant gamma-ray bubbles from Fermi-LAT: Active Galactic nucleus activity or bipolar Galactic wind? ApJ, 724, 1044–1082.

    Article  ADS  Google Scholar 

  • Tomisaka, K. (1992). The evolution of a magnetized superbubble. PASJ, 44, 17–191.

    Article  ADS  Google Scholar 

  • Tsuboi, M., et al. (1995). Galactic center arc–polarized plumes complex at 43 GHz. PASJ, 47, 829–836.

    Google Scholar 

  • van der Laan, H. (1962). “Expanding supernova remnants and galactic radio sources”. In: MNRAS 124, p. 125.

    Google Scholar 

  • Weaver, H. (1979). “Large supernova remnants as common features of the disk”. In: The Large-Scale Characteristics of the Galaxy. Ed. by W. B. Burton. Vol. 84. IAU Symposium, pp. 295–298.

    Google Scholar 

  • Weaver, R., et al. (1977). Interstellar bubbles. II. Structure and evolution. ApJ, 218, 377–395.

    Article  ADS  Google Scholar 

  • Wolleben, M. (2007). A new model for the loop I (North Polar Spur) region. ApJ, 664, 349–356.

    Article  ADS  Google Scholar 

  • Wolleben, M., et al. (2006). An absolutely calibrated survey of polarized emission from the Northern sky at 1.4 GHz. Observations and data reduction. A & A, 448, 411–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Vidal Navarro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vidal Navarro, M. (2016). WMAP Polarised Filaments. In: Diffuse Radio Foregrounds. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26263-5_3

Download citation

Publish with us

Policies and ethics