Skip to main content

Part of the book series: Science: Philosophy, History and Education ((SPHE))

  • 1025 Accesses

Abstract

This chapter provides an overview of research in various topics in chemistry curricula, based on a history and philosophy of science perspective (HPS). Six criteria, based on HPS framework, were developed for analyzing the kinetic molecular theory of gases in general chemistry textbooks published in the USA. The same criteria were used to analyze general chemistry textbooks published in Turkey. Textbooks published in both countries do not provide a satisfactory description of the following aspects: the inconsistent nature of Maxwell’s research program, the kinetic theory and chemical thermodynamics as rival research programs, and the difference between algorithmic/computational and conceptual problems.

Seven criteria, based on HPS framework, were developed for analyzing the periodic table of chemical elements in general chemistry textbooks published in the USA. These criteria were based on a historical reconstruction of the topic (domain-specific), and the same criteria were used to analyze high school chemistry textbooks published in Brazil. Similar to the textbooks published in the USA, the Brazilian textbooks did fairly well on the first two criteria that dealt with the empirical aspects of accommodation and prediction. None of the Brazilian textbooks provided a satisfactory description of criteria related to predictions, explanation of periodicity, and the nature of Mendeleev’s contribution, again quite similar to US textbooks. A teaching strategy to improve precisely these aspects related to the HPS of the periodic table was designed for introductory university-level students in Venezuela. Results obtained revealed that students’ understanding of these aspects improved considerably after the teaching intervention.

A historical reconstruction of the origin of the covalent bond shows that when it was first proposed, it posed considerable conceptual difficulties even for scientists. Four criteria were developed to analyze general chemistry textbooks published in the USA. The same criteria were used to analyze general chemistry textbooks published in Turkey, and none of the textbooks described satisfactorily neither the role played by Lewis’s cubic atom nor that the covalent bond model (sharing of electrons) had to compete with the ionic bond model (transfer of electrons). Similar results were found for textbooks published in the USA.

Determination of the elementary electrical charge is an important part of the science curriculum in many parts of the world. Based on a historical reconstruction (domain-specific), six criteria were developed for evaluating the oil drop experiment in general chemistry textbooks published in the USA and Turkey. The presentations of this topic in textbooks in both countries are quite similar, and none of them referred to the Millikan–Ehrenhaft controversy. Another study revealed that teaching about the experiment in the laboratory continues to be difficult even with a modern apparatus.

Explanation of osmotic pressure is an important part of electrolyte solution chemistry and has been the subject of considerable controversy. Hydrationists explained the increase in osmotic pressure by an increase in the number of free water molecules that are bounded to the salt. Ionists explained the same phenomenon due to the enhanced dissociation of the salt in water. It has been suggested that this topic can facilitate a debate in the classroom based on the views of the hydrationists and the ionists.

The photoelectric effect is generally the starting point for introducing quantum theory. Based on a historical reconstruction (domain-specific), six criteria were developed for analyzing general physics and chemistry textbooks published in the USA. Presentations of both sets of textbooks are quite similar, and the majority of them ignored one of the most important aspects, namely, that R. Millikan used the Einstein equation to determine the value of Planck’s constant and still rejected the underlying theory. Similarly, this aspect is ignored in laboratory manuals. A teaching strategy based on the historical aspects showed that discussions in the classroom could help students to improve their understanding.

Most textbooks introduce the concept of wave–particle duality by posing the question: if light can have both wave and particle properties, then why do particles of matter cannot also have both properties? Based on a historical reconstruction (domain-specific), six criteria were developed for analyzing general chemistry textbooks published in the USA. In general, the textbooks ignored how the concept of wave–particle duality originated and its controversial nature. Another study has suggested that the historical background of wave–particle duality can facilitate chemistry teachers’ pedagogical content knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achinstein, P. (1987). Scientific discovery and Maxwell’s kinetic theory. Philosophy of Science, 54, 409–434.

    Article  Google Scholar 

  • Achinstein, P. (1991). Particles and waves: Historical essays in the philosophy of science. New York: Oxford University Press.

    Google Scholar 

  • Adey, P., Shayer, M., & Yates, C. (2001). Thinking science: The curriculum materials of the CASE project (3rd ed.). London: Routledge.

    Google Scholar 

  • Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of Research in Science Teaching, 37, 295–317.

    Article  Google Scholar 

  • Arabatzis, T. (2006). Representing electrons: A biographical approach to theoretical entities. Chicago: University of Chicago Press.

    Google Scholar 

  • Armstrong, H. E. (1927). Poor common salt. Nature, 120, 478.

    Article  Google Scholar 

  • Armstrong, H. E. (1928). The nature of solutions. Nature, 121(3037), 48–51.

    Article  Google Scholar 

  • Atkins, P., & Jones, L. (2008). Chemical principles: The quest for insight (4th ed.). New York: Freeman.

    Google Scholar 

  • Bensaude-Vincent, B. (1986). Mendeleev’s periodic system of chemical elements. British Journal for the History of Science, 19, 3–17.

    Article  Google Scholar 

  • Blanco, R., & Niaz, M. (1997). Epistemological beliefs of students and teachers about the nature of science: From ‘Baconian inductive ascent’ to the ‘irrelevance’ of scientific laws. Instructional Science, 25, 203–231.

    Article  Google Scholar 

  • Bohm, D. (1980). Wholeness and the implicate order. London: Routledge & Kegan Paul.

    Google Scholar 

  • Bohr, N. (1913). On the constitution of atoms and molecules. Part 1. Philosophical Magazine, 26(Series 6), 1–25.

    Article  Google Scholar 

  • Brito, A., Rodríguez, M. A., & Niaz, M. (2005). A reconstruction of development of the periodic table based on history and philosophy of science and its limitations for general chemistry textbooks. Journal of Research in Science Teaching, 42, 84–111.

    Article  Google Scholar 

  • Brush, S. G. (1974). Should the history of science be rated X. Science, 183, 1164–1172.

    Article  Google Scholar 

  • Brush, S. G. (1976). The kind of motion we call heat: A history of the kinetic theory of gases in the 19th century. New York: North-Holland.

    Google Scholar 

  • Brush, S. G. (1996). The reception of Mendeleev’s periodic law in America and Britain. Isis, 87, 595–628.

    Article  Google Scholar 

  • Cartwright, N. (1983). How the laws of physics lie. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Chang, R. (2007). Chemistry (9th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Cheong, Y. W., & Song, J. (2014). Different levels of the meaning of wave-particle duality and a suspensive perspective on the interpretation of quantum theory. Science & Education, 23(5), 1011–1030.

    Article  Google Scholar 

  • Clark, P. (1976). Atomism versus thermodynamics. In C. Howson (Ed.), Method and appraisal in the physical sciences, 1800–1905 (pp. 41–105). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Clough, M. P., & Olson, J. K. (2004). The nature of science: Always part of the science story. The Science Teacher, 71(9), 28–31.

    Google Scholar 

  • Coştu, B. (2007). Comparison of students’ performance on algorithmic, conceptual and graphical chemistry gas problems. Journal of Science Education and Technology, 16, 379–386.

    Article  Google Scholar 

  • Crease, R. M. (2002). Critical point: The most beautiful experiment. Physics World, 15(9), 19–20.

    Article  Google Scholar 

  • Croft, M., & De Berg, K. (2014). From common sense concepts to scientifically conditioned concepts of chemical bonding: An historical and textbook approach designed to address learning and teaching issues at the secondary school level. Science & Education, 23(9), 1733–1761.

    Article  Google Scholar 

  • Cushing, J. T. (1991). Quantum theory and explanatory discourse: Endgame for understanding. Philosophy of Science, 58, 337–358.

    Article  Google Scholar 

  • Cushing, J. T. (1994). Quantum mechanics: historical contingency and the Copenhagen hegemony. Chicago: University of Chicago Press: Chicago.

    Google Scholar 

  • Davisson, C., & Germer, L. H. (1927a). Diffraction of electrons by a crystal of nickel. Physical Review, 30(6), 705–740.

    Article  Google Scholar 

  • Davisson, C., & Germer, L. H. (1927b). The scattering of electrons by a single crystal of nickel. Nature, 119, 558.

    Article  Google Scholar 

  • Davisson, C., & Kunsman, C. H. (1923). The scattering of low speed electrons by, platinum and magnesium. Physical Review, 22, 242–258.

    Article  Google Scholar 

  • De Berg, K. C. (2014b). The significance of the origin of physical chemistry for physical chemistry education: The case of electrolyte solution chemistry. Chemistry Education Research and Practice, 15, 266–275.

    Article  Google Scholar 

  • De Broglie, L. (1922). Journal de Physique (Series VI), 3, 422.

    Google Scholar 

  • De Broglie, L. (1923a). Ondes et quanta. Comptes Rendus, 177, 507510, 548–550, 630–632.

    Google Scholar 

  • De Broglie, L. (1923b). Waves and quanta. Nature, 112, 540.

    Article  Google Scholar 

  • De Broglie, L. (1924). A tentative theory of light quanta. Philosophical Magazine (Series 6), 47, 446–458.

    Article  Google Scholar 

  • De Souza, R. T., & Iyengar, S. S. (2013). Using quantum mechanics to facilitate the introduction of a broad range of chemical concepts to first-year undergraduate students. Journal of Chemical Education, 90, 717–725.

    Article  Google Scholar 

  • Demircioğlu, H., Demircioğlu, G., & Çalik, A. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: The case for the periodic table. Chemistry Education Research and Practice, 10, 241–249.

    Article  Google Scholar 

  • Dirac, P. A. M. (1977). Ehrenhaft, the subelectron and the quark. In C. Weiner (Ed.), History of twentieth century physics (pp. 290–293). New York: Academic Press.

    Google Scholar 

  • Drago, A. (2014). Il ruolo del sistema periodico degli elementi nel caratterizzare la chimica classica come teoria scientifica. Epistemologia, 37, 37–57.

    Article  Google Scholar 

  • Ehrenhaft, F. (1910). Uber die kleinsten messbaren elektrizitätsmengen. Zweite vorläufige mitteilung der methode zur bestimmung des elektrischen elementarquantums. Anzeiger Akad. Wiss, 10, 118–119 (Vienna).

    Google Scholar 

  • Ehrenhaft, F. (1914). Annalen der Physik, 44, 657.

    Article  Google Scholar 

  • Einstein, A. (1905). Über einen Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17, 132–148.

    Article  Google Scholar 

  • Einstein, A. (1909a). Zum gegenwärtigen stand des strahlungsproblems. Physikalische Zeitschrift, 10, 185–193.

    Google Scholar 

  • Einstein, A. (1909b). Über die Entwicklung unsere anschauungen über das wesen und die konstitution der strahlung. Physikaliche Zeitschrift, 10, 817–825.

    Google Scholar 

  • Einstein, A. (1916). Zur quantentheorie der strahlung. Zürich Mitteilungen, 18, 47–62.

    Google Scholar 

  • El-Hani, C. N., Roque, N., & Rocha, P. L. B. (2005). Programa Nacional do Livro Didático do Ensino Médio (PNLEM). Brasília: MEC.

    Google Scholar 

  • Fletcher, H. (1982). My work with Millikan on the oil-drop experiment. Physics Today, 35(6), 43–47.

    Article  Google Scholar 

  • Garritz, A. (2013). Teaching the philosophical interpretations of quantum mechanics and quantum chemistry through controversies. Science & Education, 22, 1787–1807.

    Article  Google Scholar 

  • Gavroglu, K. (1990). The reaction of the British physicists and chemists to van der Waal’s early work and to the law of corresponding states. Historical Studies in the Physical and Biological Sciences, 20, 199–237.

    Article  Google Scholar 

  • Gavroglu, K. (2000). Controversies and the becoming of physical chemistry. In P. Machamer, M. Pera, & A. Baltas (Eds.), Scientific controversies: Philosophical and historical perspectives (pp. 177–198). New York: Oxford University Press.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws. Chicago: University of Chicago Press.

    Google Scholar 

  • Giere, R. N. (2006a). Scientific perspectivism. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Gillespie, R. J., Spencer, J. N., & Moog, R. S. (1996). Part 2. Bonding and molecular geometry without orbitals — The electron domain model. Journal of Chemical Education, 73, 622–627.

    Article  Google Scholar 

  • Gordin, M. D. (2004). A well-ordered thing: Dmitrii Mendeleev and the shadow of the periodic table. New York: Basic Books.

    Google Scholar 

  • Gordin, M. (2012). The textbook case of a priority dispute: D.I. Mendeleev, Lothar Meyer, and the periodic system. In M. Biagioli & J. Riskin (Eds.), Nature engaged: Science in practice from the renaissance to the present (pp. 59–82). New York: Palgrave Macmillan.

    Chapter  Google Scholar 

  • Greca, I. M., & Freire, O., Jr. (2014). Teaching introductory quantum physics and chemistry: Caveats from the history of science and science teaching to the training of modern chemists. Chemistry Education Research and Practice, 15, 286–296.

    Article  Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  • Heering, P., & Klassen, S. (2010). Doing it differently: Attempts to improve oil-drop experiment. Physics Education, 45(4), 382–393.

    Article  Google Scholar 

  • Heering, P., & Klassen, S. (2011). Troublesome droplets: Improving students’ experiences with the Millikan oil drop experiment. In P. V. Kokkotas, K. S. Malamitsa, & A. A. Rizaki (Eds.), Adapting historical knowledge production to the classroom (pp. 103–112). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Heyrovska, R. (1996). Physical electrochemistry of strong electrolytes based on partial dissociation and hydration. Journal of the Electrochemical Society, 143(6), 1789–1793.

    Article  Google Scholar 

  • Holton, G. (1969). Einstein and the ‘crucial’ experiment. American Journal of Physics, 37, 968–982.

    Article  Google Scholar 

  • Holton, G. (1978a). Subelectrons, presuppositions, and the Millikan-Ehrenhaft dispute. Historical Studies in the Physical Sciences, 9, 161–224.

    Article  Google Scholar 

  • Holton, G. (1978b). The scientific imagination: Case studies. Cambridge: Cambridge University Press.

    Google Scholar 

  • Holton, G. (1988). On the hesitant rise of quantum physics research in the United States. In S. Goldberg & R. H. Stuewer (Eds.), The Michelson Era in American science, 1970–1930 (pp. 177–205). New York: American Institute of Physics.

    Google Scholar 

  • Holton, G. (1999). R.A. Millikan’s struggle with the meaning of Planck’s constant. Physics in Perspective, 1, 231–237.

    Article  Google Scholar 

  • Holton, G. (2014b). Personal communication to the author, August 3, italics in the original. Reproduced with permission.

    Google Scholar 

  • Jensen, W. B. (1984). Abegg, Lewis, Langmuir, and the octet rule. Journal of Chemical Education, 61, 191–200.

    Article  Google Scholar 

  • Jones, R. C. (1995). The Millikan oil-drop experiment: Making it worthwhile. American Journal of Physics, 63, 970–977.

    Article  Google Scholar 

  • Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37, 31–62.

    Article  Google Scholar 

  • Klassen, S. (2009). Identifying and addressing student difficulties with the Millikan oil drop experiment. Science & Education, 18, 593–607.

    Article  Google Scholar 

  • Klassen, S., Niaz, M., Metz, D., McMillan, B., & Dietrich, S. (2012). Portrayal of the history of the photoelectric effect in laboratory instructions. Science & Education, 21, 729–743.

    Article  Google Scholar 

  • Kohler, R. E. (1971). The origin of Lewis’s theory of the shared pair bond. Historical Studies in the Physical Sciences, 3, 343–376.

    Article  Google Scholar 

  • Kolstø, S. D. (2008). Science education for democratic citizenship through the use of history of science. Science & Education, 17, 977–997.

    Article  Google Scholar 

  • Kotz, J. C., & Purcell, K. (1991). Chemistry and chemical reactivity (2nd ed.). Philadelphia: Saunders.

    Google Scholar 

  • Kuhn, T. S. (1978). Black-body theory and quantum discontinuity: 1894–1912. New York: Oxford University Press.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–195). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Laudan, R., Laudan, L., & Donovan, A. (1988). Testing theories of scientific change. In A. Donovan, L. Laudan, & R. Laudan (Eds.), Scrutinizing science: Empirical studies of scientific change (pp. 3–44). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Lee, G., & Yi, J. (2013). Where cognitive conflict arises from? The structure of creating cognitive conflict. International Journal of Science and Mathematics Education, 11, 601–623.

    Article  Google Scholar 

  • Lenard, P. E. A. (1902). Über die LichtelektrischeWirkung. Annalen der Physik, 8, 149–198.

    Article  Google Scholar 

  • Lewis, G. N. (1916). The atom and the molecule. Journal of American Chemical Society, 38, 762–785.

    Article  Google Scholar 

  • Lewis, G. N. (1923). Valence and the structure of atoms and molecules. New York: Chemical Catalog.

    Google Scholar 

  • Mahan, B., & Myers, R. J. (1990). University chemistry (4th ed.). Menlo Park: Benjamin Cummings. Spanish.

    Google Scholar 

  • Maher, P. (1988). Prediction, accommodation and the logic of discovery. In A. Fine & J. Leplin (Eds.), PSA 1988 (Vol. 1). East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Maxwell, J. C. (1860). Illustrations of the dynamical theory of gases. Philosophical Magazine, 19, 19–32 (Reproduced in Scientific Papers, 1965, pp. 377–409, New York: Dover).

    Google Scholar 

  • McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science, 16, 247–273.

    Article  Google Scholar 

  • Medicus, H. A. (1974). Fifty years of matter waves. Physics Today, 27, 38–45.

    Article  Google Scholar 

  • Mehlecke, C., Eichler, M. L., Miskinis Salgado, T. D., & Claudio Pino del, J., (2012). A abordagem histórica acerca de produção e da recepção da tabela periódica en libros didácticos brasileiros para o ensino médio. Revista Electrónica de Enseñanza de las Ciencias, 11(3), 521–545.

    Google Scholar 

  • Mendeleev, D. (1879). The periodic law of the chemical elements. The Chemical News, 40. No. 1042.

    Google Scholar 

  • Mendeleev, D. (1889). The periodic law of the chemical elements. Journal of the Chemical Society, 55, 634–656. Faraday lecture, delivered on 4 June 1889.

    Article  Google Scholar 

  • Mendeleev, D. (1897). The principles of chemistry (2nd English ed., trans of 6th Russian ed.). New York: American Home Library Company.

    Google Scholar 

  • Millikan, R. A. (1913). On the elementary electrical charge and the Avogadro constant. Physical Review, 2, 109–143.

    Article  Google Scholar 

  • Millikan, R. A. (1916). A direct photoelectric determination of Planck’s ‘h’. Physical Review, 7, 355–388.

    Article  Google Scholar 

  • Millikan, R. A. (1917). The electron: Its isolation and measurement and the determination of some of its properties. Chicago: University of Chicago Press.

    Google Scholar 

  • Millikan, R. A. (1950). The autobiography of Robert A. Millikan. Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  • Millikan, R. A. (1965). The electron and the light-quant from the experimental point of view. In Nobel Lectures: Physics (Nobel prize acceptance speech, 1923). Amsterdam: Elsevier.

    Google Scholar 

  • Moore, J. W. (2003). Editorial: Turning the (periodic) tables. Journal of Chemical Education, 80(8), 847.

    Article  Google Scholar 

  • Mortimer, E. F., & Machado, A. H. (2005). Química. São Paulo: Scipione.

    Google Scholar 

  • Moseley, H. G. J. (1913–1914). Atomic models and X-ray spectra. Nature, 92, 554.

    Google Scholar 

  • Mount Holyoke College. (2004). http://mtholyoke.edu/acad/intdept/i42/Photoeleclab04.PDF

  • Navarro, J. (2012). A history of the electron: J.J. Thomson and G.P. Thomson. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Niaz, M. (1998a). A Lakatosian conceptual change teaching strategy based on student ability to build models with varying degrees of conceptual understanding of chemical equilibrium. Science & Education, 7, 107–127.

    Article  Google Scholar 

  • Niaz, M. (2000a). The oil drop experiment: A rational reconstruction of the Millikan-Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37, 480508.

    Article  Google Scholar 

  • Niaz, M. (2000c). A rational reconstruction of the kinetic molecular theory of gases based on history and philosophy of science and its implications for chemistry textbooks. Instructional Science, 28, 23–50.

    Article  Google Scholar 

  • Niaz, M. (2001c). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks. International Journal of Science Education, 23(6), 623–641.

    Article  Google Scholar 

  • Niaz, M. (2005). An appraisal of the controversial nature of the oil drop experiment: Is closure possible? British Journal for the Philosophy of Science, 56(4), 681–702.

    Article  Google Scholar 

  • Niaz, M. (2009). Critical appraisal of physical science as a human enterprise: Dynamics of scientific progress. Dordrecht: Springer.

    Google Scholar 

  • Niaz, M. (2012a). From ‘science in the making’ to understanding the nature of science: An overview for science educators. New York: Routledge.

    Google Scholar 

  • Niaz, M., & Coştu, B. (2013). Analysis of Turkish general chemistry textbooks based on a history and philosophy of science perspective. In M. S. Khine (Ed.), Critical analysis of science textbooks: Evaluating instructional effectiveness (pp. 199–218). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Niaz, M., & Fernández, R. (2008). Understanding quantum numbers in general chemistry textbooks. International Journal of Science Education, 30(7), 869–901.

    Article  Google Scholar 

  • Niaz, M., & Luiggi, M. (2014). Facilitating conceptual change in students’ conceptual understanding of the periodic table. Dordrecht: Springer.

    Book  Google Scholar 

  • Niaz, M., & Marcano, C. (2012). Reconstruction of wave-particle duality and its implications for general chemistry textbooks. Dordrecht: Springer.

    Book  Google Scholar 

  • Niaz, M., & Robinson, W. R. (1992). Manipulation of logical structure of chemistry problems and its effects on student performance. Journal of Research in Science Teaching, 29, 211–226.

    Article  Google Scholar 

  • Niaz, M., & Rodríguez, M. A. (2001). Do we have to introduce history and philosophy of science or is it already ‘inside’ chemistry? Chemistry Education: Research and Practice in Europe, 2, 159–164.

    Google Scholar 

  • Niaz, M., Rodríguez, M. A., & Brito, A. (2004). An appraisal of Mendeleev’s contribution to the development of the periodic table. Studies in the History and Philosophy of Science, 35, 271–282.

    Article  Google Scholar 

  • Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010a). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94, 903–931.

    Article  Google Scholar 

  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27(10), 937–949.

    Article  Google Scholar 

  • Nurrenbern, S. C., & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference? Journal of Chemical Education, 64, 508–510.

    Article  Google Scholar 

  • Oh, J.-Y. (2011). Using an enhanced conflict map in the classroom (photoelectric effect) based on Lakatosian heuristic principle strategies. International Journal of Science and Mathematics Education, 9, 1135–1166.

    Article  Google Scholar 

  • Ospina, J. (2010). Efecto fotoeléctrico: Una reconstrucción racional basada en la historia y filosofía de la ciencia y sus implicaciones para los textos de química general (Master of Science (chemistry education) dissertation). Cumaná: Universidad de Oriente.

    Google Scholar 

  • Padilla, K., & Van Driel, J. H. (2011). The relationships between PCK components: The case of quantum chemistry professors. Chemistry Education Research and Practice, 12, 367–378.

    Article  Google Scholar 

  • Paraskevopoulou, E., & Koliopoulos, D. (2011). Teaching nature of science through the Millikan-Ehrenhaft dispute. Science & Education, 20(10), 943–950.

    Article  Google Scholar 

  • Pauli, W. (1925). Über den zusammenhang des abschluβes der elektronengruppen im atom mit der komplexstruktur der spektren. Zeitschrift für Physik, 31, 765–785.

    Article  Google Scholar 

  • Porter, T. M. (1981). A statistical survey of gases: Maxwell’s social physics. Historical Studies in Physical Sciences, 12, 77–116.

    Article  Google Scholar 

  • Raman, V. V., & Forman, P. (1969). Why was it Schrödinger who developed de Broglie’s ideas? Historical Studies in the Physical Sciences, 1, 291–314.

    Article  Google Scholar 

  • Rodebush, W. H. (1928). The electron theory of valence. Chemical Review, 5, 509–531.

    Article  Google Scholar 

  • Rodríguez, M. A., & Niaz, M. (2004). A reconstruction of structure of the atom and its implications for general physics textbooks. Journal of Science Education and Technology, 13, 409–424.

    Article  Google Scholar 

  • Segal, B. G. (1989). Chemistry: Experiment and theory (2nd ed.). New York: Wiley.

    Google Scholar 

  • Shapere, D. (1977). Scientific theories and their domains. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 518–565). Chicago: University of Illinois Press.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.

    Article  Google Scholar 

  • Styer, D. F. (2000). The strange world of quantum mechanics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Thomson, J. J. (1897). Cathode rays. Philosophical Magazine, 44, 293–316.

    Article  Google Scholar 

  • Thomson, J. J. (1907). The corpuscular theory of matter. London: Constable.

    Google Scholar 

  • Thomson, J. J. (1914). The forces between atoms and chemical affinity. Philosophical Magazine, 27, 757–789.

    Article  Google Scholar 

  • Thomson, G. P., & Reid, A. (1928). Proceedings of the Royal Society of London A, 117, 601–609.

    Article  Google Scholar 

  • Tsai, C.-C. (2000). Enhancing science instruction: The use of ‘conflict maps’. International Journal of Science Education, 22(3), 285–302.

    Article  Google Scholar 

  • Tsaparlis, G., & Papahotis, G. (2009). High school students’ conceptual difficulties and attempts at conceptual change. International Journal of Science Education, 31, 895–930.

    Article  Google Scholar 

  • Ünal, S., Çalık, M., Ayas, A., & Coll, R. K. (2006). A review of chemical bonding studies: Needs, aims, methods of exploring students’ conceptions, general knowledge claims, and students’ alternative conceptions. Research in Science & Technological Education, 24(2), 141–172.

    Article  Google Scholar 

  • Ünal, S., Coştu, B., & Ayas, A. (2010). Secondary school students’ misconceptions of covalent bonding. Journal of Turkish Science Education, 7(2), 3–29.

    Google Scholar 

  • Van de Waals, J. D. (1873). Over de Continuiteit Van den Gas en Vloeistoftoestand. Leyden.

    Google Scholar 

  • Van Spronsen, J. (1969). The periodic system of chemical elements. A history of the first hundred years. Amsterdam: Elsevier.

    Google Scholar 

  • Wartofsky, M. W. (1968). Conceptual foundations of scientific thought: An introduction to the philosophy of science. New York: Macmillan.

    Google Scholar 

  • Weisberg, M. (2007). Who is a modeler? British Journal for the Philosophy of Science, 58, 207–233.

    Article  Google Scholar 

  • Wheaton, B. R. (1983). The tiger and the shark: Empirical roots of wave-particle dualism. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ziman, J. (1978). Reliable knowledge. An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niaz, M. (2016). An Overview of Research in Chemistry Education. In: Chemistry Education and Contributions from History and Philosophy of Science. Science: Philosophy, History and Education. Springer, Cham. https://doi.org/10.1007/978-3-319-26248-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26248-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26246-8

  • Online ISBN: 978-3-319-26248-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics