Advertisement

Reactive Power Optimization in Wind Power Plants Using Cuckoo Search Algorithm

  • K. S. PandyaEmail author
  • J. K. Pandya
  • S. K. Joshi
  • H. K. Mewada
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)

Abstract

This chapter presents the application of a new meta-heuristic optimization algorithm called cuckoo search algorithm (CSA) to solve optimal reactive power dispatch problem (ORPD) of the power system in the presence of wind power plants (WPP). Due to the inclusion of WPP, the ORPD problem becomes a complex combinatorial optimization problem and it has a nonlinear objective function with many local minima, and discontinuous and nonlinear constraint functions. CSA is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lѐvy flight behavior of some birds and fruit flies. The effectiveness and feasibility of CSA have been tested on a 41-bus WPP test system and the obtained results that have been compared with particle swarm optimization (PSO). Simulation results yield that the CSA converges to better optimal solutions faster than PSO.

Keywords

Artificial intelligence method Cuckoo search algorithm Particle swarm optimization Reactive power optimization Wind power plant 

References

  1. 1.
    Indian Electricity Grid Code. http://www.cercind.gov.in. pp. 1–73
  2. 2.
    Deeb, N., Shaidepour, S.M.: Linear reactive power optimization in a large power network using the decomposition approach. IEEE Trans. Power Syst. 5(2), 428–435 (1990)CrossRefGoogle Scholar
  3. 3.
    Gomez, T., Perez-Arriaga, I.J., Lumbreras, J., Parra, V.M.: A security-constrained decomposition approach to optimal reactive power planning. IEEE Trans. Power Syst. 6(3), 1069–1076 (1991)CrossRefGoogle Scholar
  4. 4.
    Wu, Y.C., Debs, A.S., Marsten, R.E.: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Trans. Power Syst. 9(2), 876–883 (1994)CrossRefGoogle Scholar
  5. 5.
    Kermanshahi, B., Takahashi, K., Zhou, Y.: Optimal operation and allocation of reactive power resource considering static voltage stability. In: Proceedings of the International Conference on Power System Technology, vol. 2, pp. 1473–1477, Aug 1998Google Scholar
  6. 6.
    Chattopadhyay, D., Chakrabarti, B.B.: Voltage stability constrained VAR planning: Model simplification using statistical approximation. Int. J. Elect. Power Energy Syst. 23(5), 349–358 (2001)CrossRefGoogle Scholar
  7. 7.
    Yan, W.,Yu, J., Yu, D.C., Bhattarai, K.: A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method. IEEE Trans. Power Syst. 21(1), 61–67 (2006)Google Scholar
  8. 8.
    Rabiee, A., Vanouni, M., Parniani, M.: Optimal reactive power dispatch for improving voltage stability margin using a local voltage stability index. Energy Convers. Manag. 59, 66–73 (2012)CrossRefGoogle Scholar
  9. 9.
    Lee, K.Y., Bai, X., Park, Y.M.: Optimization method for reactive power planning by using a modified simple genetic algorithm. IEEE Trans. Power Syst. 10(4), 1843–1850 (1995)CrossRefGoogle Scholar
  10. 10.
    Venkatesh, B., Sadasivam, G., Khan, M.A.: An efficient multi-objective fuzzy logic based successive LP method for optimal reactive power planning. Elect. Power Syst. Res. 59(2), 89–102 (2001)CrossRefGoogle Scholar
  11. 11.
    Zhang, W., Liu, Y., Liu, Y.: Optimal VAR planning in area power system. In: Proceedings of the International Conference on Power System Technology, pp. 2072–2075, 13–17 Oct 2002Google Scholar
  12. 12.
    Chen, Y.L., Ke, Y.L.: Multi-objective VAR planning for large-scale power systems using projection based two-layer simulated annealing algorithms. IEEE Proc. Gener. Transm. Distrib. 151(4), 555–560 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhao, B., Guo, C., Cao, Y.: A Multi-agent based particle swarm optimization approach for optimal reactive power dispatch. IEEE Trans. Power Syst. 20(2), 1070–1078 (2005)CrossRefGoogle Scholar
  14. 14.
    Dai, C., Chen, W., Zhu, Y., Zhang, X.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)Google Scholar
  15. 15.
    El-Ela, A.A., Kinawy, A.M., El-Sehiemy, R., Mouwafi, M.: Optimal reactive power dispatch using Ant colony optimization algorithm. Electr. Eng. 93(2), 103–106 (2011)CrossRefGoogle Scholar
  16. 16.
    Salaan, C.J., Estoperez, N.R.: An artificial neural network based real-time reactive power controller. In: Proceedings of the World Congress on Engineering and Computer Science(WCECS-2011), San Francisco, USA, Oct 2011Google Scholar
  17. 17.
    Raha, S.B., Chakraborty, N.: Tuned reactive power dispatch through modified differential evolution technique. Front. Energy 6(2), 138–147 (2012)Google Scholar
  18. 18.
    Saraswat, A., Saini, A.: Multi-objective optimal reactive power dispatch considering voltage stability in power systems using HFMOEA. Eng. Appl. Artif. Intell. 26(1), 390–404 (2013)CrossRefGoogle Scholar
  19. 19.
    Villanueva, D., Feijoo, A., Pazos, J.: Probabilistic load flow considering correlation between generation, loads and wind power. Smart Grid Renew. Energy 2, 12–20 (2011)CrossRefGoogle Scholar
  20. 20.
    Erlich, I., Nakawiro, W.: Optimal dispatch of reactive sources in wind farms. Presented at Power and Energy Society General Meeting, pp. 1–7, 24–29 July 2011Google Scholar
  21. 21.
    Rojas, M., Sumper, M., Bellmunt, A., Andreu, O.: Reactive power dispatch in wind farms using particle swarm optimization techniques and feasible solutions search. Appl. Energy 88(12), 4678–4686 (2011)CrossRefGoogle Scholar
  22. 22.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  23. 23.
    Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: Proceedings of the World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), IEEE publications, pp. 210–214 (2009)Google Scholar
  24. 24.
    Pavlyukevich, I.: Levy flights, non-local search and simulated annealing. J. Comput. Phys. 226, 1830–1844 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Payne, R.B., Sorenson, M.D., Klitz, K.: The Cuckoos. Oxford University Press, Oxford (2005)Google Scholar
  26. 26.
    Erlich, I., Lee, K.Y., Rueda, J.L., Wildenhues, S.: IEEE PES competition on application of modern heuristic optimization algorithms for solving optimal power flow problems: Problem definitions and implementation guidelines. p. 4 https://www.unidue.de/ean/downloads/aktuelles/Invitation_letter.pdf. Sept 2013
  27. 27.
    Zimmerman, R.D., et al.: MATPOWER: Steady-State Operations, planning and analysis tools for power systems research and education. IEEE Trans. on Power Syst. 26(1), 12–19 (2011)CrossRefGoogle Scholar
  28. 28.
    Joines, J.A., Houck, C.R.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 579–584 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • K. S. Pandya
    • 1
    Email author
  • J. K. Pandya
    • 2
  • S. K. Joshi
    • 3
  • H. K. Mewada
    • 4
  1. 1.Department of Electrical Engineering, CSPITCharotar University of Science and TechnologyChangaIndia
  2. 2.Department of Civil EngineeringDharmsinh Desai UniversityNadiadIndia
  3. 3.Department of Electrical EngineeringThe M.S. University of BarodaVadodaraIndia
  4. 4.Department of Electronics & Communications, CSPITCharotar University of Science and TechnoloogyChangaIndia

Personalised recommendations