Advertisement

Optimum Reinforced Concrete Design by Harmony Search Algorithm

  • Gebrail Bekdaş
  • Sinan Melih Nigdeli
  • Xin-She YangEmail author
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)

Abstract

The music-inspired metaheuristic method, called harmony search (HS), is an effective tool in optimization of engineering design problems. HS has been applied for the optimum design of reinforced concrete (RC) members so as to find the best solution, balancing the usability of the design and economy. In this chapter, the optimum design of RC members is presented after optimization of RC members. Then, HS-based optimization applications, such as RC slender columns, RC shear walls, and post-tensioned RC axially symmetric cylindrical walls, are also discussed. The HS-based methods are feasible in finding the optimum design in such problems.

Keywords

Metaheuristic methods Reinforced concrete Optimization Harmony search algorithm 

References

  1. 1.
    Coello, C.C., Hernandez, F.S., Farrera, F.A.: Optimal design of reinforced concrete beams using genetic algorithms. Expert Syst. Appl. 12, 101–108 (1997)CrossRefGoogle Scholar
  2. 2.
    Rafiq, M.Y., Southcombe, C.: Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Comput. Struct. 69, 443–457 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Koumousis, V.K., Arsenis, S.J.: Genetic algorithms in optimal detailed design of reinforced concrete members. Comput-Aided Civ. Inf. 13, 43–52 (1998)CrossRefGoogle Scholar
  4. 4.
    Rajeev, S., Krishnamoorthy, C.S.: Genetic algorithm-based methodology for design optimization of reinforced concrete frames. Comput-Aided Civ. Inf. 13, 63–74 (1998)CrossRefGoogle Scholar
  5. 5.
    Rath, D.P., Ahlawat, A.S., Ramaswamy, A.: Shape optimization of RC flexural members. J. Struct. Eng.-ASCE 125, 1439–1446 (1999)Google Scholar
  6. 6.
    Camp, C.V., Pezeshk, S., Hansson, H.: Flexural design of reinforced concrete frames using a genetic algorithm. J. Struct. Eng.-ASCE 129, 105–111 (2003)Google Scholar
  7. 7.
    Ferreira, C.C., Barros, M.H.F.M., Barros, A.F.M.: Optimal design of reinforced concrete T-sections in bending. Eng. Struct. 25, 951–964 (2003)CrossRefGoogle Scholar
  8. 8.
    Leps, M., Sejnoha, M.: New approach to optimization of reinforced concrete beams. Comput. Struct. 81, 1957–1966 (2003)CrossRefGoogle Scholar
  9. 9.
    Lee, C., Ahn, J.: Flexural design of reinforced concrete frames by genetic algorithm. J. Struct. Eng.-ASCE 129(6), 762–774 (2003)Google Scholar
  10. 10.
    Balling, R., Yao, X.: Optimization of reinforced concrete frames. J. Struct. Eng.-ASCE 123, 193–202 (1997)Google Scholar
  11. 11.
    Ahmadkhanlou, F., Adeli, H.: Optimum cost design of reinforced concrete slabs using neural dynamics model. Eng. Appl. Artif. Intell. 18(1), 65–72 (2005)CrossRefGoogle Scholar
  12. 12.
    Adeli, H., Park, H.S.: Optimization of space structures by neural dynamics. Neural Netw. 8(5), 769–781 (1995)CrossRefGoogle Scholar
  13. 13.
    Adeli, H., Park, H.S.: Neurocomputing for Design Automation. CRC Press, Boca Raton (1998)Google Scholar
  14. 14.
    Barros, M.H.F.M., Martins, R.A.F., Barros, A.F.M.: Cost optimization of singly and doubly reinforced concrete beams with EC2-2001. Struct. Multidiscip. O. 30, 236–242 (2005)CrossRefGoogle Scholar
  15. 15.
    Sirca Jr, G., Adeli, H.: Cost optimization of prestressed concrete bridges. J. Struct. Eng. ASCE 131(3), 380–388 (2005)CrossRefGoogle Scholar
  16. 16.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete continuous beams using Genetic Algorithms. Comput. Struct. 84, 34–48 (2005)CrossRefGoogle Scholar
  17. 17.
    Sahab, M.G., Ashour, A.F., Toropov, V.V.: Cost optimisation of reinforced concrete flat slab buildings. Eng. Struct. 27, 313–322 (2005)CrossRefGoogle Scholar
  18. 18.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete frames using genetic algorithms. Eng. Optimiz. 39(4), 471–494 (2007)CrossRefGoogle Scholar
  19. 19.
    Guerra, A., Kiousis, P.D.: Design optimization of reinforced concrete structures. Comput. Concrete. 3, 313–334 (2006)CrossRefGoogle Scholar
  20. 20.
    Paya, I., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A.: Multiobjective optimization of concrete frames by simulated annealing. Comput-Aided Civ. Inf. 23, 596–610 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Perea, C., Alcala, J., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A.: Design of reinforced concrete bridge frames by heuristic optimization. Adv. Eng. Softw. 39, 676–688 (2008)CrossRefGoogle Scholar
  22. 22.
    Paya-Zaforteza, I., Yepes, V., Hospitaler, A., Gonzalez-Vidosa, F.: CO2-optimization of reinforced concrete frames by simulated annealing. Eng. Struct. 31, 1501–1508 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Camp, C.V., Huq, F.: CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng. Struct. 48, 363–372 (2013)CrossRefGoogle Scholar
  24. 24.
    Gil-Martin, L.M., Hernandez-Montes, E., Aschheim, M.: Optimal reinforcement of RC columns for biaxial bending. Mater. Struct. 43, 1245–1256 (2010)CrossRefGoogle Scholar
  25. 25.
    Barros, A.F.M., Barros, M.H.F.M., Ferreira, C.C.: Optimal design of rectangular RC sections for ultimate bending strength. Struct. Multidiscip. O. 45, 845–860 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fedghouche, F., Tiliouine, B.: Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2. Eng. Struct. 42, 43–50 (2012)CrossRefGoogle Scholar
  27. 27.
    Ceranic, B., Freyer, C., Baines, R.W.: An application of simulated annealing to the optimum design reinforced concrete retaining structure. Comput. Struct. 79, 1569–1581 (2001)CrossRefGoogle Scholar
  28. 28.
    Yepes, V., Alcala, J., Perea, C., Gonzalez-Vidosa, F.: A parametric study of optimum earth-retaining walls by simulated annealing. Eng. Struct. 30, 821–830 (2008)CrossRefGoogle Scholar
  29. 29.
    Kaveh, A., Abadi, A.S.M.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civil Eng. 9(1), 1–8 (2011)Google Scholar
  30. 30.
    Camp, C.V., Akin, A.: Design of retaining walls using big bang–big crunch optimization. J. Struct. Eng.-ASCE, 138(3), 438–448 (2012)Google Scholar
  31. 31.
    Talatahari, S., Sheikholeslami, R., Shadfaran, M., Pourbaba, M.: Optimum design of gravity retaining walls using charged system search algorithm. Math. Probl. Eng. 2012, 1–10 (2012)CrossRefGoogle Scholar
  32. 32.
    Akin, A., Saka, M.P.: Optimum detailed design of reinforced concrete continuous beams using the harmony search algorithm. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Romero, M.L. (eds.) Proceedings of the Tenth International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, Paper 131 (2010). doi: 10.4203/ccp.93.131
  33. 33.
    Bekdaş, G., Nigdeli, S.M.: Optimization of T-shaped RC flexural members for different compressive strengths of concrete. Int. J. Mech. 7, 109–119 (2013)Google Scholar
  34. 34.
    Bekdaş, G., Nigdeli S.M.: Optimization of slender reinforced concrete columns. 85th annual meeting of the international association of applied mathematics and mechanics, 10–14 March 2014, Erlangen, Germany (2014)Google Scholar
  35. 35.
    Nigdeli, S.M., Bekdaş, G.: Optimum design of RC columns according to effective length factor in buckling. the twelfth international conference on computational structures technology, 2–5 Sept 2014, Naples, ItalyGoogle Scholar
  36. 36.
    Bekdaş, G., Nigdeli, S.M.: Optimization of RC frame structures subjected to static loading. In: 11th World Congress on Computational Mechanics, 20–25 July 2014, Barcelona, Spain (2014)Google Scholar
  37. 37.
    Nigdeli, S.M., Bekdaş, G.: Optimization of reinforced concrete shear walls using harmony search. In: 11th International Congress on Advances in Civil Engineering, 21–25 Oct 2014, Istanbul, Turkey (2014)Google Scholar
  38. 38.
    Bekdaş, G.: Harmony search algorithm approach for optimum design of post-tensioned axially symmetric cylindrical reinforced concrete walls. J. Optim. Theory Appl. 164(1), 342–358 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bekdas, G.: Optimum design of axially symmetric cylindrical reinforced concrete walls. Struct. Eng. Mech. 51(3), 361–375 (2014)CrossRefGoogle Scholar
  40. 40.
    Nigdeli, S.M., Bekdaş, G., Kim, S., Geem, Z.W.: A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Struct. Eng. Mech. doi:http://dx.doi.org/10.12989/sem.2015.54.6.000
  41. 41.
    Kaveh, A., Abadi, A.S.M.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civil Eng. 9(1), 1–8 (2011)Google Scholar
  42. 42.
    Kaveh, A., Sabzi, O.: Optimal design of reinforced concrete frames using big bang-big crunch algorithm. Int. J. Civil Eng. 10(3), 189–200 (2012)Google Scholar
  43. 43.
    Rama Mohan Rao, A.R., Shyju, P.P.: A meta-heuristic algorithm for multi-objective optimal design of hybrid laminate composite structures. Comput-Aided Civ. Infrastruct. Eng. 25(3), 149–170 (2010)Google Scholar
  44. 44.
    Nigdeli, S.M., Bekdas, G.: Optimization of RC beams for various cost ratios of steel/concrete. In: 4th European Conference of Civil Engineering ECCIE’13, 8–10 Oct 2013, Antalya, Turkey (2013)Google Scholar
  45. 45.
    Bekdaş, G., Nigdeli, S.M.: Optimum design of uniaxial RC columns. In: An International Conference on Engineering and Applied Sciences Optimization, 4–6 June 2014, Kos Island, Greece (2014)Google Scholar
  46. 46.
    Bekdaş, G., Nigdeli, S.M.: Optimization of reinforced concrete columns subjected to uniaxial loading. In: Engineering and Applied Sciences Optimization, pp. 399–412. Springer International Publishing (2015)Google Scholar
  47. 47.
    Jahjouh, M.M., Arafa, M.H., Alqedra, M.A.: Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams. Struct Multidiscip. Optim. 47(6), 963–979 (2013)CrossRefGoogle Scholar
  48. 48.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  49. 49.
    Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.W.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37, 663–684 (2005)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)CrossRefzbMATHGoogle Scholar
  51. 51.
    Geem, Z.W., Sim, K.-B.: Parameter setting free harmony search algorithm. Appl. Math. Comput. 217, 3881–3889 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Hasancebi, O., Erdal, F., Saka, M.P.: Adaptive harmony search method for structural optimization. J. Struct. Eng. 136, 419–431 (2010)CrossRefGoogle Scholar
  53. 53.
    ACI 318M-05, Building code requirements for structural concrete and commentary, American Concrete Institute, 2005Google Scholar
  54. 54.
    Hetenyi, M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor (1946)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gebrail Bekdaş
    • 1
  • Sinan Melih Nigdeli
    • 1
  • Xin-She Yang
    • 2
    Email author
  1. 1.Department of Civil EngineeringIstanbul UniversityAvcılar, IstanbulTurkey
  2. 2.Design Engineering and MathematicsMiddlesex University LondonLondonUK

Personalised recommendations