Advertisement

Hybrid Meta-heuristic Application in the Asphalt Pavement Management System

  • Fereidoon Moghadas Nejad
  • Ashkan Allahyari Nik
  • H. ZakeriEmail author
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)

Abstract

This chapter presents a hybrid meta-heuristic method which combines particle swarm optimization (PSO) and genetic algorithm (GA) search procedures to predict the pavement condition index (PCI) based on Surveyed Inspection Units (SIUs). Both PSO and GA are used and a comparison is made among three approaches for evaluating the optimal arrangement of SIUs. A hybrid method was developed to build and optimize the models. The performances of these hybrid models were compared based on Sampling Error (SE), Total Network Inspection Error (TNIE), inspection time based on CPU time (seconds), total number of SIUs, and others. Based on the results of the computational experiments, one of the proposed heuristic procedures is used for solving problems in the arrangement of surveyed asphalt pavement inspection units. The study reveals that the hybrid model outperforms both the PSO and the GA based models.

Keywords

Pavement management Pavement condition index Surveyed inspection units Particle swarm optimization 

References

  1. 1.
    Medury, A., Madanat, S.: Simultaneous network optimization approach for pavement management systems. J. Infrastruct. Syst. 20(3), 04014010 (2014)CrossRefGoogle Scholar
  2. 2.
    Shahnazari, H., Tutunchian, M.A., Mashayekhi, M., Amini, A.A.: Application of soft computing for prediction of pavement condition index. J. Transp. Eng. 138(12), 1495–1506 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhou, G., Wang, L.: Co-location decision tree for enhancing decision-making of pavement maintenance and rehabilitation. J. Transp. Res. Part C 21, 287–305 (2012)CrossRefGoogle Scholar
  4. 4.
    Bianchini, A.: Fuzzy representation of pavement condition for efficient pavement management. J. Comput. Aid. Civil Infra. Eng. 27, 608–619 (2012)CrossRefGoogle Scholar
  5. 5.
    Meegoda, J., Gao, S.: Roughness progression model for asphalt pavements using long-term pavement performance data. J. Transp. Eng. 140(8), 04014037 (2014)CrossRefGoogle Scholar
  6. 6.
    Bogus, S., Song, J., Waggerman, R., Lenke, L.: Rank correlation method for evaluating manual pavement distress data variability. J. Infrastruct. Syst. 16(1), 66–72 (2010)CrossRefGoogle Scholar
  7. 7.
    Su, Y., Kang, S., Chang, J., Hsieh, S.: Dual-light inspection method for automatic pavement surveys. J. Comput. Civ. Eng. 27(5), 534–543 (2013)CrossRefGoogle Scholar
  8. 8.
    Smilowitz, K., Madanat, S.: Optimal inspection and maintenance policies for infrastructure networks. Comput. Aided Civil Infrastruct. Eng. 15(1), 5–13 (2000)CrossRefGoogle Scholar
  9. 9.
    Koch, C., Jog, G., Brilakis, I.: Automated pothole distress assessment using asphalt pavement video data. J. Comput. Civ. Eng. 27(4), 370–378 (2013)CrossRefGoogle Scholar
  10. 10.
    Shahin, M.Y.: Pavement Management for Airports, Roads and Parking Lots, 2nd edn. Springer, New York (2005)Google Scholar
  11. 11.
    Hegazy, T., Elhakeem, A., Ahluwalia, S.S., Attalla, M.: MOST-FIT: support techniques for inspection and life cycle optimization in building asset management. Comput. Aided Civil Infrastruct. Eng. 27, 130–142 (2012)CrossRefGoogle Scholar
  12. 12.
    Bianchini, A.: Pavement maintenance planning at the network level with principal component analysis. J. Infrastruct. Syst. 20(2), 04013013 (2013)CrossRefGoogle Scholar
  13. 13.
    Buddhavarapu, P., Banerjee, A., Prozzi, J.A.: Influence of pavement condition on horizontal curve safety. J. Accid. Analy. Prevent. 52, 9–18 (2013)CrossRefGoogle Scholar
  14. 14.
    Terzi, S.: Modeling for pavement roughness using the ANFIS approach. J. Adv. Eng. Softw. 57, 59–64 (2013)CrossRefGoogle Scholar
  15. 15.
    Alabama Department of Transportation: A Study of Manual Versus Automated Pavement Condition Surveys. Montgomery (2004)Google Scholar
  16. 16.
    Kuhn, K.D.: Pavement network maintenance optimization considering multidimensional condition data. J. Infrastruct. Syst. 18(4), 270–277 (2012)CrossRefGoogle Scholar
  17. 17.
    Alsugair, A.M., Al-Qudrah, A.A.: Artificial neural network approach for pavement maintenance. J. Comput. Civ. Eng. 12(4), 249–255 (1998)CrossRefGoogle Scholar
  18. 18.
    McPherson, E.G., Muchnick, J.: Effects of street tree shade on asphalt concrete pavement performance. J. Arboric. 31(6), 303–310 (2005)Google Scholar
  19. 19.
    Galleo, E., Moya, M., Piniés, M., Ayuga, F.: Valuation of low volume roads in Spain. Part 2: Methodology validation. J. Biosys. Eng. 101(1), 135–142 (2008)CrossRefGoogle Scholar
  20. 20.
    Li, X., Keegan, K., Yazdani, A.: Index of Foreign Object Damage in Airfield Pavement Management, Transportation Research Record: Journal of the Transportation Research Board, 2153, Transportation Research Board of the National Academies, Washington, D.C., pp. 81–87 (2010)Google Scholar
  21. 21.
    Moazami, D., Behbahani, H., Muniandy, R.: Pavement rehabilitation and maintenance prioritization of urban roads using fuzzy logic. J. Expert Syst. Appl. 38(10), 12869–12879 (2011)CrossRefGoogle Scholar
  22. 22.
    Tabatabaei, S.A., Khaledi, S., Jahantabi, A.: Modeling the deduct value of the pavement condition of asphalt pavement by adaptive neuro fuzzy inference system. J. Pave. Res. Tech. 6(1), 59–65 (2013)Google Scholar
  23. 23.
    Department of Environment, Heritage and Local Government. (2004). Non-national Roads Condition Study. IrelandGoogle Scholar
  24. 24.
    Michigan Department of Transportation: Statewide Pavement Management Report: Phase One and Two Airports. Applied Pavement Technology Inc., Illinois (2008)Google Scholar
  25. 25.
    Texas Transportation Institute: Use of Micro Unmanned Aerial Vehicles for Roadside Condition Assessment. Texas Transportation Institute, Texas (2010)Google Scholar
  26. 26.
    Oregon Department of Aviation: Pavement Evaluation/Maintenance Management Program: Final Report—Individual Airports Functional Category 2. Pavement Consultants Inc., Washington (2011)Google Scholar
  27. 27.
    ASTM D6433-11: Standard Practice for Roads and Parking Lots Pavement Condition Index. ASTM international, West Conshohocken (2011)Google Scholar
  28. 28.
    De la Garza, J.M., Piñero, J.C., Ozbek, M.E.: Sampling procedure for performance-based road maintenance evaluations. Transp. Res. Rec.: J. Transp. Res. Board 2044, 11–18 (2008)CrossRefGoogle Scholar
  29. 29.
    Mishalani, R.G., Gong, L.: Optimal infrastructure condition sampling over space and time for maintenance decision-making under uncertainty. J. Transp. Res. Part B 43(3), 311–324 (2009)CrossRefGoogle Scholar
  30. 30.
    Talbi, El: Metaheuristics: from Design to Implementation, 1st edn. Wiley, New Jersey (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Miradi, M., Molenaar, A.A., van de Ven, F.C.: Knowledge discovery and data mining using artificial intelligence to unravel porous asphalt concrete in the Netherlands. In: Gopalakrishnan, K., et al. (eds.) Intelligent and Soft Computing in Infrastructure Systems Engineering, SCI, vol. 259, pp. 107–176 (2009)Google Scholar
  32. 32.
    Adeli, H.: Neural networks in civil engineering: 1989-2000. Comput.-Aided Civil Infrastruct. Eng. 16, 126–142 (2001)CrossRefGoogle Scholar
  33. 33.
    Tack, J.N., Chou, E.Y.J.: Multiyear pavement repair scheduling optimization by preconstrained genetic algorithm. Transp. Res. Rec.: J. Transp. Res. Board 1816, 3–8 (2002)CrossRefGoogle Scholar
  34. 34.
    Chan, W.T., Fwa, T.F., Tan, J.Y.: Benefits of information integration in budget planning for pavement management. Transp. Res. Rec.: J. Transp. Res. Board 1889, 3–12 (2004)CrossRefGoogle Scholar
  35. 35.
    Maji, A., Jha, M.K.: Modeling highway infrastructure maintenance schedule with budget constraint, TRB Annual Metting, Transportation Research Board of the National Academies, Washington, D.C (2007)Google Scholar
  36. 36.
    Tang, Y., Chien, S.I.: Scheduling Work Zones for Highway Maintenance Projects Considering a Discrete Time-Cost Relation, Transportation Research Record: Journal of the Transportation Research Board, 2055, pp. 21–30. Transportation Research Board of the National Academies, Washington, D.C. (2008)Google Scholar
  37. 37.
    Gosse, C.A., Smith, B.L., Clarens, A.F.: Environmentally preferable pavement management systems. J. Infrastruct. Syst. 19(3), 315–325 (2013)CrossRefGoogle Scholar
  38. 38.
    Kepaptsoglou, K., Konstantinidou, M., Karlaftis, M.G., Stathopoulos, A.: Planning post-disaster operations in a highway network: a 1 network design model with interdependencies, TRB Annual Metting, Transportation Research Board of the National Academies, Washington, D.C (2014)Google Scholar
  39. 39.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  40. 40.
    Lotfi, M.M., Tavakkoli-Moghaddam, R.: A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems. J. Appl. Soft Comput. 13(5), 2711–2726 (2013)CrossRefGoogle Scholar
  41. 41.
    Cavuoti, S., Garofalo, M., Brescia, M., Paolillo, M., Pescape’, A., Longo, G., Ventre, G.: Astrophysical data mining with GPU. A case study: genetic classification. J. New Astro. 26, 12–22 (2014)Google Scholar
  42. 42.
    Lu, P., Tolliver, D.: Multiobjective pavement-preservation decision making with simulated constraint boundary programming. J. Transp. Eng. 139(9), 880–888 (2013)CrossRefGoogle Scholar
  43. 43.
    Gopalakrishnan, K.: Neural network-swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation. J. Transp. Eng. 136(6), 528–536 (2010)CrossRefGoogle Scholar
  44. 44.
    Chang, J.: Particle swarm optimization method for optimal prioritization of pavement sections for maintenance and rehabilitation activities. Appl. Mech. and Mat. 343, 43–49 (2013)Google Scholar
  45. 45.
    Tayebi, N.R., Moghadas Nejad, F., Mola, M.: Comparison between GA and PSO in analyzing pavement management activities. J. Transp. Eng. 140(1), 99–104 (2014)CrossRefGoogle Scholar
  46. 46.
    Blum, C., Roli, A.: Hybrid Metaheuristics: An Introduction, Studies in Computational Intelligence(SCI), vol. 114, pp. 1–30. Springer, New York (2008)Google Scholar
  47. 47.
    Greene, J., Shahin, M.Y., Alexander, D.R.: Airfield Pavement Condition Assessment, Transportation Research Record: Journal of the Transportation Research Board, No. 1889, TRB, National Research Council, Washington, D.C., pp. 63–70 (2004)Google Scholar
  48. 48.
    Moghadas Nejad, F., Zakeri, H.: The hybrid method and its application to smart pavement management. In: Yang, X. S., Alavi, A. H., (eds.) Metaheuristics in Water, Geotechnical and Transport Engineering, pp. 439–484 (2013)Google Scholar
  49. 49.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Piscataway, N.J. (1995)Google Scholar
  50. 50.
    Kuoa, R.J., Lin., L.M.: Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. J. Dec. Supp. Sys. 49, 451–462 (2010)Google Scholar
  51. 51.
    Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1951–1957 (1999)Google Scholar
  52. 52.
    Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1, 235–306 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE International Conference Systems, Man and Cybernetic. IEEE Service Center, Piscataway, NJ, pp. 4104–4108 (1997)Google Scholar
  55. 55.
    Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. J. Phys. A 391(6), 2193–2196 (2012)Google Scholar
  56. 56.
    Lu, Ch., Yu, V.F.: Data envelopment analysis for evaluating the efficiency of genetic algorithms on solving the vehicle routing problem with soft time windows. J. Comput. Indust. Eng. 63(2), 520–529 (2012)CrossRefGoogle Scholar
  57. 57.
    Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms, 1st edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  58. 58.
    Kao, Y.T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 8(2), 849–857 (2008)CrossRefGoogle Scholar
  59. 59.
    Zeng, K., Peng, G., Cai, Z., Huang, Z., Yang, X.: A hybrid natural computing approach for the VRP problem based on PSO, GA and quantum computation. In: Yeo, S.-S., et al. (eds.) Computer Science and Its Applications. Springer Science+Business Media, Dordrecht (2012)Google Scholar
  60. 60.
    Castillo, O.: Type-2 Fuzzy Logic in Intelligent Control Applications: A Hybrid PSO-GA Optimization Method to Design Type-1 and Type-2 Fuzzy Logic Controllers, STUDFUZZ 272, pp. 105–118. Springer, Heidelberg (2012)Google Scholar
  61. 61.
    Kumar, P.G., Victoire, T.A., Renukadevi, P., Devaraj, D.: Design of fuzzy expert system for microarray data classification using a novel Genetic Swarm Algorithm. Expert Syst. Appl. 39(2012), 1811–1821 (2012)CrossRefGoogle Scholar
  62. 62.
    Babu, K., Vijayalakshmi, D.: Self-Adaptive PSO-GA hybrid model for combinatorial water distribution network design. J. Pipeline Syst. Eng. Pract. 4(1), 57–67 (2013)Google Scholar
  63. 63.
    Martínez-Soto, R., Castillo, O., Aguilar, L.T., Rodriguez, A.: A hybrid optimization method with PSO and GA to automatically design Type-1 and Type-2 fuzzy logic controllers, Int. J. Mach. Learn. Cybern. (2013)Google Scholar
  64. 64.
    Galvez, A., Iglesias, A.: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing. Appl. Soft Comput. 13, 1491–1504 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fereidoon Moghadas Nejad
    • 1
  • Ashkan Allahyari Nik
    • 2
  • H. Zakeri
    • 3
    Email author
  1. 1.Department of Civil and Environment EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Civil Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Amirkabir Artificial Intelligence and Image Processing Lab (Attain), Department of Civil and Environment EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations