Advertisement

A DSS-Based Honeybee Mating Optimization (HBMO) Algorithm for Single- and Multi-objective Design of Water Distribution Networks

  • Omid Bozorg HaddadEmail author
  • Navid Ghajarnia
  • Mohammad Solgi
  • Hugo A. Loáiciga
  • Miguel Mariño
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)

Abstract

A decision support system (DSS) for long-term design of water distribution networks (WDNs) herein named “dynamic design” is proposed in this work. The proposed DSS is capable of recognizing the long-term consequences of various WDN initial designs to achieve a desirable performance in the rehabilitation period. Single- and multi-objective initial designs and rehabilitation problems are considered in which the design variables are the pipes’ diameters and several rehabilitation alternatives. The DSS relies on the honeybee mating optimization (HBMO) and the multi-objective honeybee mating optimization (MOHBMO) algorithms to minimize the total cost of the initial implementation of a WDN and of its rehabilitation cost, and/or maximize the WDN’s hydraulic reliability. This paper’s results show the advantages of a DSS that considers design and rehabilitation (dynamic design) of activities simultaneously in comparison to DSSs that minimize the initial cost of WDNs only (normal design).

Keywords

Decision support system Single-objective optimization Multi-objective optimization Honeybee mating optimization algorithm Initial design Rehabilitation Water distribution system 

References

  1. 1.
    Afshar, A., Bozorg Haddad, O., Marino, M.A., Adams, B.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Franklin Inst. 344(5), 452–462 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Afshar, A., Shafii, M., Bozorg Haddad, O.: Optimizing multi-reservoir operation rules: an improved HBMO approach. J. Hydroinformatics 13(1), 121–139 (2010)CrossRefGoogle Scholar
  3. 3.
    Alperovits, E., Shamir, U.: Design of optimal water distribution systems. Water Resour. Res. 13(6), 885–900 (1977)CrossRefGoogle Scholar
  4. 4.
    Alvisi, S., Franchini, M.: Multiobjective optimization of rehabilitation and leakage detection scheduling in water distribution systems. J. Water Res. Plann. Manage. 135(6), 426–439 (2009)CrossRefGoogle Scholar
  5. 5.
    Arulraj, G.P., Suresh, H.R.: Concept of significance index for maintenance and design of pipe networks. J. Hydraul. Eng. (ASCE) 121(11), 833–837 (1995)Google Scholar
  6. 6.
    Berardi, L., Kapelan, Z., Giustolisi, O., Savic, D.A.: Development of pipe deterioration models for water distribution systems using EPR. J. Hydroinformatics 10(2), 113–126 (2008)CrossRefGoogle Scholar
  7. 7.
    Bozorg Haddad, O., Marino, M.A.: Dynamic penalty function as a strategy in solving water resources combinatorial optimization problems with honey-bee optimization (HBMO) algorithm. J. Hydroinformatics 9(3), 233–250 (2007)CrossRefGoogle Scholar
  8. 8.
    Bozorg Haddad, O., Mariño, M.A.: Optimum operation of wells in coastal aquifers. Proc. Inst. Civil Eng. Water Manage. 164(3), 135–146 (2011)CrossRefGoogle Scholar
  9. 9.
    Bozorg Haddad, O., Afshar, A., Mariño, M.A.: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour. Manage. 20(5), 661–680 (2006)CrossRefGoogle Scholar
  10. 10.
    Bozorg Haddad, O., Adams, B.J., Mariño, M.A.: Optimum rehabilitation strategy of water distribution systems using the HBMO algorithm. J. Water Supply Res. Technol. 151, 337–350 (2008)CrossRefGoogle Scholar
  11. 11.
    Bozorg Haddad, O., Afshar, A., Marino, M.A.: Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs. J. Hydroinformatics 10(3), 257–264 (2008)CrossRefGoogle Scholar
  12. 12.
    Bozorg Haddad, O., Afshar, A., Marino, M.A.: Design-operation of multi-hydropower reservoirs: HBMO approach. Water Resour. Manage. 22(12), 1709–1722 (2008)CrossRefGoogle Scholar
  13. 13.
    Bozorg Haddad, O., Afshar, A., Marino, M.A.: Optimization of non-convex water resource problems by honey-bee mating optimization (HBMO) algorithm. Eng. Comput. (Swansea, Wales), 26(3), 267–280 (2009)Google Scholar
  14. 14.
    Bozorg Haddad, O., Moradi-Jalal, M., Mirmomeni, M., Kholghi, M.K.H., Mariño, M.A.: Optimal cultivation rules in multi-crop irrigation areas. Irr. Drain. 58(1), 38–49 (2009)CrossRefGoogle Scholar
  15. 15.
    Bozorg Haddad, O., Mirmomeni, M., Mariño, M.A.: Optimal design of stepped spillways using the HBMO algorithm. Civil Eng. Environ. Syst. 27(1), 81–94 (2010)CrossRefGoogle Scholar
  16. 16.
    Bozorg Haddad, O., Mirmomeni, M., ZarezadehMehrizi, M., Mariño, M.A.: Finding the shortest path with honey-bee mating optimization algorithm in project management problems with constrained/unconstrained resources. Comput. Optim. Appl. 47(1), 97–128 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bozorg Haddad, O., Moradi-Jalal, M., Mariño, M.A.: Design-operation optimisation of run-of-river power plants. Proc. Inst. Civil Eng. Water Manage. 164(9), 463–475 (2011)CrossRefGoogle Scholar
  18. 18.
    Clark, R.M., Stafford, C.L., Goodrich, J.A.: Water distribution systems: a spatial and cost evaluation. J. Water Resour. Plann. Manage. (ASCE) 108, 243–256 (1982)Google Scholar
  19. 19.
    Cunha, M.C., Sousa, J.: Hydraulic infrastructures design using simulated annealing. J. Infrastruct. Syst. (ASCE) 7(1), 32–39 (2001)Google Scholar
  20. 20.
    Cunha, M.C., Sousa, J.: Water distribution network design optimization: simulated annealing approach. J. Water Resour. Plann. Manage. (ASCE) 125(4), 215–221 (1999)CrossRefGoogle Scholar
  21. 21.
    Dandy, G.C., Engelhardt, M.: Multi-objective trade-offs between cost and reliability in the replacement of water mains. J. Water Resour. Plann. Manage. ASCE 132(2), 79–88 (2006)CrossRefGoogle Scholar
  22. 22.
    Elstad, J.C., Byer, P.H., Adams, B.J.: Optimal timing of the restoration of watermain carrying capacity. In: Proceedings of the CSCE Centennial Conference, Montreal, P.Q., pp. 60–70 (1987)Google Scholar
  23. 23.
    Engelhardt, M.O., Skipworth, P.J., Savic, D.A., Saul, A.J., Walters, G.A.: Rehabilitation strategies for water distribution networks: a literature review with a UK perspective. Urban Water 2, 153–170 (2000)CrossRefGoogle Scholar
  24. 24.
    Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plann. Manage. (ASCE) 129(3), 210–225 (2003)CrossRefGoogle Scholar
  25. 25.
    Fallah-Mehdipour, E., Bozorg Haddad, O., Beygi, S., Mariño, M.A.: Effect of utility function curvature of Young’s bargaining method on the design of WDNs. Water Resour. Manage. 25(9), 2197–2218 (2011)CrossRefGoogle Scholar
  26. 26.
    Fallah-Mehdipour, E., Bozorg Haddad, O., Mariño, M.A.: MOPSO algorithm and its application in multipurpose multireservoir operations. J. Hydroinformatics 13(4), 794–811 (2011)CrossRefGoogle Scholar
  27. 27.
    Fallah-Mehdipour, E., Bozorg Haddad, O., Mariño, M.A.: Real-time operation of reservoir system by genetic programming. Water Resour. Manage. 26(14), 4091–4103 (2012)CrossRefGoogle Scholar
  28. 28.
    Fallah-Mehdipour, E., Bozorg Haddad, O., RezapourTabari, M.M., Mariño, M.A.: Extraction of decision alternatives in construction management projects: application and adaptation of NSGA-II and MOPSO. Expert Syst. Appl. 39(3), 2794–2803 (2012)CrossRefGoogle Scholar
  29. 29.
    Fallah-Mehdipour, E., Bozorg Haddad, O., Mariño, M.A.: Developing reservoir operational decision rule by genetic programming. J. Hydroinformatics 15(1), 103–119 (2013)CrossRefGoogle Scholar
  30. 30.
    Fallah-Mehdipour, E., Bozorg Haddad, O., Mariño, M.A.: Extraction of multicrop planning rules in a reservoir system: Application of evolutionary algorithms. J. Irri. Drain. Eng. 139(6), 490–498 (2013)CrossRefGoogle Scholar
  31. 31.
    Fujiwara, O., Kang, D.B.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour. Res. 26(4), 539–549 (1990)CrossRefGoogle Scholar
  32. 32.
    Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. J. Eng. Optim. 38(3), 259–280 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ghajarnia, N.: Multi-objective dynamic design of water distribution networks. M.Sc. thesis, Department of Irrigation and Reclamation Engineering, University of Tehran, Iran (2009)Google Scholar
  34. 34.
    Ghajarnia, N., Bozorg Haddad, O., Mariño, M.A.: Performance of a novel hybrid algorithm in the design of water networks. Water Manage. 164(4), 173–191 (2011)Google Scholar
  35. 35.
    Goulter, I.C., Bouchart, F.: Reliability constrained pipe networks model. J. Hydraul. Eng. (ASCE) 16(2), 221–229 (1990)Google Scholar
  36. 36.
    Goulter, I.C., Lussier, B.M., Morgan, D.R.: Implications of head loss path choice in the optimization of water distribution networks. Water Resour. Res. 22(5), 819–822 (1986)CrossRefGoogle Scholar
  37. 37.
    Halhal, D., Walters, G.A., Savic, D.A., Ouazar, D.: Scheduling of water distribution system rehabilitation using structured messy genetic algorithms. Evol. Comput. 7(3), 311–329 (1999)CrossRefGoogle Scholar
  38. 38.
    Jahanshahi, G., Bozorg Haddad, O.: Honey-bee mating optimization (HBMO) algorithm for optimal design of water distribution systems. World Environmental and Water Resources Congress, Honolulu, Hawaii, United States, 12–16 May 2008Google Scholar
  39. 39.
    Kanakoudis, V.K.: A troubleshooting manual for handling operational problems in water pipe networks. Water Supply Res. Technol. AQUA IWAp 53(2), 109–124 (2004)Google Scholar
  40. 40.
    Kanakoudis, V.K.: Vulnerability based management of water resources systems. Hydroinformatics WAp 6(2), 133–156 (2004)Google Scholar
  41. 41.
    Kanakoudis, V.K., Tolikas, D.K.: The role of leaks and breaks in water networks—technical and economical solutions. Water Supply Res. Technol. AQUA IWAp 50(5), 301–311 (2001)Google Scholar
  42. 42.
    Kanakoudis, V.K., Tolikas, D.K.: Assessing the Performance Level of a water system. Water Air Soil Pollut. 4–5, 307–318 (2004)CrossRefGoogle Scholar
  43. 43.
    Karimi-Hosseini, A., Bozorg Haddad, O., Mariño, M.A.: Site selection of raingauges using entropy methodologies. Proc. Instit. Civil Eng. Water Manage. 164(7), 321–333 (2011)CrossRefGoogle Scholar
  44. 44.
    Keen, P.G.W., Morton, M.S.S.: Decision Support Systems: An Organizational Perspective. Addison-Wesley Pub (1978)Google Scholar
  45. 45.
    Kessler, A., Shamir, U.: Analysis of the linear programming gradient method for optimal design of water supply networks. Water Resour. Res. 25(7), 1469–1480 (1989)CrossRefGoogle Scholar
  46. 46.
    Kim, J.H., Mays, L.W.: Optimal rehabilitation model for water-distribution systems. J. Water Res. Plann. Manage. (ASCE) 120(5), 674–692 (1994)Google Scholar
  47. 47.
    Kleiner, Y., Adams, B.J., Rogers, J.S.: Long-term planning methodology for water distribution system rehabilitation. Water Resour. Res. 34(8), 2039–2051 (1998)CrossRefGoogle Scholar
  48. 48.
    Kleiner, Y., Adams, B.J., Rogers, J.S.: Selection and scheduling of rehabilitation alternatives for water distribution systems. Water Resour. Res. 34(8), 2053–2061 (1998)CrossRefGoogle Scholar
  49. 49.
    Lansey, K.E., Basnet, C., Mays, L.W., Woodburn, J.: Optimal maintenance scheduling for water distribution systems. Civil Eng. Syst. 9(3), 211–226 (1992)CrossRefGoogle Scholar
  50. 50.
    Lippai, I., Heaney, J.P., Laguna, M.: Robust water system design with commercial intelligent search optimizers. J. Comput. Civil Eng. 13(3), 135–143 (1999)CrossRefGoogle Scholar
  51. 51.
    Maier, H.R., Simpson, A.R., Zencchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y., Tan, C.L.: Ant colony optimization for design of water distribution systems. J. Water Resour. Plann. Manage. 129(3), 200–209 (2003)CrossRefGoogle Scholar
  52. 52.
    Male, J.W., Walski, T.M., Slutski, A.H.: Analyzing watermain replacement policies. J. Water Resour. Plann. Manage. (ASCE) 116(3), 363–374 (1990)Google Scholar
  53. 53.
    Nafi, A., Kleiner, Y.: Scheduling renewal of water pipes while considering adjacency of infrastructure works and economies of scale. J. Resour. Plann. Manage. (ASCE) 136(5), 519–530 (2010)CrossRefGoogle Scholar
  54. 54.
    Nafi, A., Werey, C., Llerena, P.: Water pipe renewal using a multi-objective optimization approach. Can. J. Civ. Eng. 35, 87–94 (2008)CrossRefGoogle Scholar
  55. 55.
    Orouji, H., Bozorg Haddad, O., Fallah-Mehdipour, E., Mariño, M.A.: Estimation of Muskingum parameter by meta-heuristic algorithms. Proc. Inst. Civil Eng Water Manage. 166(6), 315–324 (2013)CrossRefGoogle Scholar
  56. 56.
    Prasad, T.D., Park, N.S.: Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plann. Manage. (ASCE) 130(1), 73–82 (2004)CrossRefGoogle Scholar
  57. 57.
    Quindry, G.E., Brill, E.D., Liebman, J.C.: Optimization of looped water distribution systems. J. Environ. Eng. 107(4), 665–679 (1981)Google Scholar
  58. 58.
    Roshani, E., Filion, Y.R.: Event based network rehabilitation planning and asset management. In: 14th annual Water Distribution Systems Analysis Conference (WDSA), Adelaide, Australia, pp. 933–943 (2012)Google Scholar
  59. 59.
    Rossman, L.A.: EPANET user manual. Drinking Water Research Division, Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, July 2000Google Scholar
  60. 60.
    Sabbaghpour, S., Naghashzadehgan, M., Javaherdeh, K., Bozorg Haddad, O.: HBMO algorithm for calibrating water distribution network of Langarud city. Water Sci. Technol. 65(9), 1564–1569 (2012)CrossRefGoogle Scholar
  61. 61.
    Savic, D.A., Walters, G.A.: Genetic algorithms for least-cost design of water distribution networks. J. Water Resour. Plann. Manage. (ASCE) 123(2), 67–77 (1997)CrossRefGoogle Scholar
  62. 62.
    Schneiter, C.R., Haims, Y.Y., Li, D., Lambert, J.H.: Capacity reliability of water distribution networks and optimum rehabilitation decision making. Water Resour. Res. 32(7), 2271–2278 (1996)CrossRefGoogle Scholar
  63. 63.
    Seifollahi-Aghmiuni, S., Bozorg Haddad, O., Omid, M.H., Mariño, M.A.: Long-term efficiency of water networks with demand uncertainty. Proc. Inst. Civil Eng. Water Manage. 164(3), 147–159 (2011)CrossRefGoogle Scholar
  64. 64.
    Seifollahi-Aghmiuni, S., Bozorg Haddad, O., Omid, M.H., Mariño, M.A.: Effects of pipe roughness uncertainty on water distribution network performance during its operational period. Water Resour. Manage 27(5), 1581–1599 (2013)CrossRefGoogle Scholar
  65. 65.
    Shamir, U., Howard, C.D.D.: An analytic approach to scheduling pipe replacement. J. Am. Water Works Assoc. 71(5), 248–258 (1979)Google Scholar
  66. 66.
    Sharp, W.W., Walski, T.M.: Predicting internal roughness in water mains. J. Am. Water Works Assoc. 80, 34–40 (1988)Google Scholar
  67. 67.
    Shokri, A., Bozorg Haddad, O., Mariño, M.A.: Algorithm for increasing the speed of evolutionary optimization and its accuracy in multi-objective problems. Water Resour. Manage. 27(7), 2231–2249 (2013)CrossRefGoogle Scholar
  68. 68.
    Sol, H.G., Takkenberg C.A.Th., De VriesRobbe, P.F.: Expert systems and artificial intelligence in decision support systems. In: Proceedings of the Second Mini Euroconference, Springer, Lunteren, The Netherlands, 17–20 Nov 1985 (1987)Google Scholar
  69. 69.
    Solgi, M., Bozorg Haddad, O., Seifollahi-Aghmiuni, S., Loaiciga, H.A.: Intermittent operation of water distribution networks considering equanimity and justice principles. J. Pipeline Syst. Eng. Pract. (2015). doi: 10.1061/(ASCE)PS.1949-1204.0000198 Google Scholar
  70. 70.
    Soltanjalili, M., Bozorg Haddad, O., Mariño, M.A.: Operating water distribution networks during water shortage conditions using hedging and intermittent water supply concepts. J. Water Resour. Plann. Manage. (2013) In PressGoogle Scholar
  71. 71.
    Soltanjalili, M., Bozorg Haddad, O., Seifollahi-Aghmiuni, S., Mariño, M.A.: Water distribution networks simulation by optimization approaches. Water Sci. Technol. Water Supply (2013) In PressGoogle Scholar
  72. 72.
    Su, Y.C., Mays, L.W.: New methodology for determining the optimal rehabilitation and replacement of water distribution system components. In: Abt S.R., Gessler J. (eds.) Proceedings of Hydraulic Engineering ASCE National Conference, Edited by , (ASCE), New York, N.Y., 1149–1154 (1988)Google Scholar
  73. 73.
    Suribabu, C.R., Neelakantan, T.R.: Design of water distribution networks using particle swarm optimization. J. Urban Water 3(2), 111–120 (2006)CrossRefGoogle Scholar
  74. 74.
    Todini, E.: Looped water distribution networks design using a resilience index based heuristic approach. J. Urban Water 2(3), 115–122 (2000)CrossRefGoogle Scholar
  75. 75.
    Tsitsifli, S., Kanakoudis, V., Bakouros, L.: Pipe networks risk assessment based on survival analysis. Water Resour. Manage. 2514, 3729–3746 (2011)Google Scholar
  76. 76.
    Walski, T.M.: The wrong paradigm-Why water distribution optimization doesn’t work. J. Water Resour. Plann. Manage. (ASCE) 127(4), 203–205 (2001)CrossRefGoogle Scholar
  77. 77.
    Walski, T.M., Pelliccia, A.: Economic analysis of watermain breaks. J. Am. Water Works Assoc. 74(3), 140–147 (1982)Google Scholar
  78. 78.
    Walski, T.M.: Optimization and pipe-sizing decisions. J. Water Resour. Plann. Manage. (ASCE) 121(4), 340–343 (1995)Google Scholar
  79. 79.
    Young, H.P.: An evolutionary model of bargaining. J. Econ. Theory 59, 145–168 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Omid Bozorg Haddad
    • 1
    Email author
  • Navid Ghajarnia
    • 1
  • Mohammad Solgi
    • 1
  • Hugo A. Loáiciga
    • 2
  • Miguel Mariño
    • 3
  1. 1.University of TehranTehranIran
  2. 2.University of California, Santa BarbaraSanta BarbaraUSA
  3. 3.University of California, DavisDavisUSA

Personalised recommendations