Skip to main content

Review and Applications of Metaheuristic Algorithms in Civil Engineering

  • Chapter
  • First Online:

Part of the book series: Modeling and Optimization in Science and Technologies ((MOST,volume 7))

Abstract

Many design optimization problems in civil engineering are highly nonlinear and can be challenging to solve using traditional methods. In many cases, metaheurisitc algorithms can be an effective alternative and thus suitable in civil engineering applications. In this chapter, metaheuristic algorithms in civil engineering problems are briefly presented and recent applications are discussed. Two case studies such as the optimization of tuned mass dampers and cost optimization of reinforced concrete beams are analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan, Ann Arbor (1975)

    Google Scholar 

  2. Goldberg, D.E., Samtani, M.P.: Engineering optimization via genetic algorithm. In: Proceedings of Ninth Conference on Electronic Computation. ASCE, New York, NY, pp. 471–482 (1986)

    Google Scholar 

  3. Sahab, M.G., Toropov, V.V., Gandomi, A.H.: A review on traditional and modern structural optimization: problems and techniques. In: Metaheuristic Applications in Structures and Infrastructures, pp. 25–47. Elsevier, Oxford (2013)

    Google Scholar 

  4. Marano, G.C., Quaranta, G., Monti, G.: Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements. Comput. Aided Civil Infrastruct. Eng. 26(2), 92–110 (2011)

    Article  Google Scholar 

  5. Sgambi, L., Gkoumas, K., Bontempi, F.: Genetic algorithms for the dependability assurance in the design of a long-span suspension bridge. Comput. Aided Civil Infrastruct. Eng. 27(9), 655–675 (2012)

    Article  Google Scholar 

  6. Kociecki, M., Adeli, H.: Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures. Eng. Appl. Artif. Intell. 32, 218–227 (2014)

    Article  Google Scholar 

  7. Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107–128 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dezani, H., Bassi, R.D., Marranghello, N., Gomes, L., Damiani, F., da Silva, I.N.: Optimizing urban traffic flow using Genetic Algorithm with Petri net analysis as fitness function. Neuro Comput. 124, 162–167 (2014)

    Google Scholar 

  9. Putha, R., Quadrifoglio, L., Zechman, E.: Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Comput. Aided Civil Infrastruct. Eng. 27(1), 14–28 (2012)

    Article  Google Scholar 

  10. Chang, F.S., Wu, J.S., Lee, C.N., Shen, H.C.: Greedy-search-based multi-objective genetic algorithm for emergency logistics scheduling. Expert Syst. Appl. 41(6), 2947–2956 (2014)

    Article  Google Scholar 

  11. Zhu, W., Hu, H., Huang, Z.: Calibrating rail transit assignment models with Genetic Algorithm and automated fare collection data. Comput. Aided Civil Infrastruct. Eng. 29(7), 518–530 (2014)

    Article  Google Scholar 

  12. Kirkpatrick, S., GelattJr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  13. Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Costa, A.L., Cunha, M.D.C., Coelho, P.A., Einstein, H.H.: Solving high-speed rail planning with the simulated annealing algorithm. J. Transp. Eng. 139(6), 635–642 (2013)

    Article  Google Scholar 

  15. Tong, K.H., Bakhary, N., Kueh, A.B.H., Yassin, A.Y.: Optimal sensor placement for mode shapes using improved simulated annealing. Smart Struct. Syst. 13(3), 389–406 (2014)

    Google Scholar 

  16. Liu, W., Ye, J.: Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm. J. Constr. Steel Res. 97, 59–68 (2014)

    Article  Google Scholar 

  17. Karovic, O., Mays, L.W.: Sewer system design using simulated annealing in excel. Water Resour. Manage. 28(13), 4551–4565 (2014)

    Article  Google Scholar 

  18. Junghans, L., Darde, N.: Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization. Energy Build. 86, 651–662 (2015)

    Article  Google Scholar 

  19. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)

    Article  Google Scholar 

  20. Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)

    Article  Google Scholar 

  21. Dias, J.C., Machado, P., Silva, D.C., Abreu, P.H.: An inverted ant colony optimization approach to traffic. Eng. Appl. Artif. Intell. 36, 122–133 (2014)

    Article  Google Scholar 

  22. Gao, W.: Determination of the noncircular critical slip surface in slope stability analysis by meeting ant colony optimization. J. Comput. Civil Eng. (2015)

    Google Scholar 

  23. Angelo, J.S., Bernardino, H.S., Barbosa, H.J.: Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv. Eng. Softw. 80, 101–115 (2015)

    Article  Google Scholar 

  24. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks No. IV, 27 Nov–1 Dec, pp. 1942–1948, Perth Australia (1995)

    Google Scholar 

  25. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, New York (2014)

    Google Scholar 

  26. Yang, X.S.: Recent Advances in Swarm Intelligence and Evolutionary Computation (2015)

    Google Scholar 

  27. Gholizadeh, S., Fattahi, F.: Design optimization of tall steel buildings by a modified particle swarm algorithm. Struct. Des. Tall Spec. Build. 23(4), 285–301 (2014)

    Article  Google Scholar 

  28. Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–147 (2014)

    Article  Google Scholar 

  29. Gandomi, A.H., Kashani, A.R., Mousavi, M., Jalalvandi, M.: Slope stability analyzing using recent swarm intelligence techniques. Int. J. Numer. Anal. Methods Geomech. (2014)

    Google Scholar 

  30. Montalvo, I., Izquierdo, J., Pérez-García, R., Herrera, M.: Water distribution system computer-aided design by agent swarm optimization. Comput. Civil Infrastruct. Eng. 29(6), 433–448 (2014)

    Article  Google Scholar 

  31. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  32. Yoo, D.G., Kim, J.H., Geem, Z.W.: Overview of Harmony Search algorithm and its applications in civil engineering. Evol. Intel. 7(1), 3–16 (2014)

    Article  Google Scholar 

  33. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)

    Google Scholar 

  34. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer, Heidelberg (2009)

    Google Scholar 

  36. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23), 2325–2336 (2011)

    Article  Google Scholar 

  37. Talatahari, S., Gandomi, A.H., Yun, G.J.: Optimum design of tower structures using firefly algorithm. Struct. Des. Tall Spec. Build. 23(5), 350–361 (2014)

    Article  Google Scholar 

  38. Mauder, T., Sandera, C., Stetina, J., Seda, M.: Optimization of the quality of continuously cast steel slabs using the firefly algorithm. Mater. Technol. 45(4), 347–350 (2011)

    Google Scholar 

  39. Miguel, L.F.F., Lopez, R.H., Miguel, L.F.F.: Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv. Eng. Softw. 56, 23–37 (2013)

    Article  Google Scholar 

  40. Liu, C., Gao, Z., Zhao, W.: A new path planning method based on firefly algorithm. In: 2012 Fifth International Joint Conference on Computational Sciences and Optimization (CSO), pp. 775–778 (2012)

    Google Scholar 

  41. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature and Biologically Inspired Computing, 2009. NaBIC 2009, pp. 210–214 (2009)

    Google Scholar 

  42. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  43. Kaveh, A., Bakhshpoori, T.: Optimum design of steel frames using cuckoo search algorithm with Lévy flights. Struct. Des. Tall Spec. Build. 22(13), 1023–1036 (2013)

    Article  Google Scholar 

  44. Gandomi, A.H., Talatahari, S., Yang, X.S., Deb, S.: Design optimization of truss structures using cuckoo search algorithm. Struct. Des. Tall Spec. Build. 22(17), 1330–1349 (2013)

    Article  Google Scholar 

  45. Ouaarab, A., Ahiod, B., Yang, X.S.: Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl. 24(7–8), 1659–1669 (2014)

    Article  Google Scholar 

  46. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  47. Yang, X.S., Hossein Gandomi, A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)

    Article  Google Scholar 

  48. Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013)

    Article  Google Scholar 

  49. Gholizadeh, S., Shahrezaei, A.M.: Optimal placement of steel plate shear walls for steel frames by bat algorithm. Struct. Des. Tall Spec. Build. 24(1), 1–18 (2015)

    Article  Google Scholar 

  50. Kaveh, A., Zakian, P.: Enhanced bat algorithm for optimal design of skeletal structures. Asian J. Civil Eng. 15(2), 179–212 (2014)

    Google Scholar 

  51. Talatahari, S., Kaveh, A.: Improved bat algorithm for optimum design of large-scale truss structures. Int. J. Optim. Civil Eng. 5(2), 241–254 (2015)

    Google Scholar 

  52. Bekdas, G., Nigdeli, S. M., Yang, X.S.: Metaheuristic optimization for the design of reinforced concrete beams under flexure moments. In: Proceedings of the 5th European Conference of Civil Engineering (ECCIE’14), pp. 184–188 (2014)

    Google Scholar 

  53. Zhou, Y., Xie, J., Zheng, H.: A hybrid bat algorithm with path relinking for capacitated vehicle routing problem. Math. Probl. Eng. (2013)

    Google Scholar 

  54. Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., Loáiciga, H.A.: Development and application of the bat algorithm for optimizing the operation of reservoir systems. J. Water Resour. Plann. Manag. (2014). doi:10.1061/(ASCE)WR.1943-5452.0000498

    Google Scholar 

  55. Erol, O.K., Eksin, I.: A new optimization method: Big Bang Big Crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Article  Google Scholar 

  56. Camp, C.V.: Design of space trusses using Big Bang-Big Crunch optimization. J. Struct. Eng. 133(7), 999–1008 (2007)

    Article  Google Scholar 

  57. Kaveh, A., Talatahari, S.: Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput. Struct. 87(17), 1129–1140 (2009)

    Article  Google Scholar 

  58. Kaveh, A., Talatahari, S.: A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures. Asian J. Civil Eng. 11(1), 103–122 (2010)

    Google Scholar 

  59. Hasançebi, O., Kazemzadeh Azad, S.: Discrete size optimization of steel trusses using a refined Big Bang–Big Crunch algorithm. Eng. Optim. 46(1), 61–83 (2014)

    Article  MathSciNet  Google Scholar 

  60. Hasançebi, O., Azad, S.K.: An exponential Big Bang-Big Crunch algorithm for discrete design optimization of steel frames. Comput. Struct. 110, 167–179 (2012)

    Article  Google Scholar 

  61. Tang, H., Zhou, J., Xue, S., Xie, L.: Big Bang-Big Crunch optimization for parameter estimation in structural systems. Mech. Syst. Signal Process. 24(8), 2888–2897 (2010)

    Article  Google Scholar 

  62. Camp, C.V., Akin, A.: Design of retaining walls using Big Bang-Big Crunch optimization. J. Struct. Eng. 138(3), 438–448 (2011)

    Article  Google Scholar 

  63. Kaveh, A., Talatahari, A.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–289 (2010)

    Article  MATH  Google Scholar 

  64. Kaveh, A., Maniat, M.:. Damage detection in skeletal structures based on charged system search optimization using incomplete modal data. Int. J. Civil Eng. 12(2A), 292–299 (2014)

    Google Scholar 

  65. Kaveh, A., Shokohi, F.: Cost optimization of castellated beams using charged system search algorithm. Iran. J. Sci. Technol. Trans. Civil Eng. 38(C1), 235–249 (2014)

    Google Scholar 

  66. Kaveh, A., Nasrollahi, A.: Charged system search and particle swarm optimization hybridized for optimal design of engineering structures. Sci. Iran. Trans. A Civil Eng. 21(2), 295 (2014)

    Google Scholar 

  67. Kaveh, A., Massoudi, M.S.: Multi-objective optimization of structures using charged system search. Sci. Iran. Trans. A Civil Eng. 21(6), 1845 (2014)

    Google Scholar 

  68. Kaveh, A., Mohammadi, S., Hosseini, O.K., Keyhani, A., Kalatjari, V.R.: Optimum parameters of tuned mass dampers for seismic applications using charged system search. Iran. J. Sci. Technol. Trans. Civil Eng. 39(C1), 21 (2015)

    Google Scholar 

  69. Kaveh, A., Pirgholizadeh, S., Hosseini, O.K.: Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm. Asian J. Civil Eng. (BHRC) 16(5), 587–606 (2015)

    Google Scholar 

  70. Gandomi, A.H., Alavi, A.H.: Krill Herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4381–4845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kaveh, A., Khayatazad, M.: A novel meta-heuristic method: ray optimization. Comput. Struct. 112–113, 283–294 (2012)

    Article  Google Scholar 

  72. Kaveh, A., Khayatazad, M.: Ray optimization for size and shape optimization of truss structures. Comput. Struct. 117, 82–94 (2013)

    Article  Google Scholar 

  73. Esmaeili, M., Zakeri, J.A., Kaveh, A., Bakhtiary, A., Khayatazad, M.: Designing granular layers for railway tracks using ray optimization algorithm. Sci. Iran. Trans. A Civil Eng. 22(1), 47 (2015)

    Google Scholar 

  74. Yang, X. S. (2012), Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation 2012, Lecture Notes in Computer Science, vol. 7445, pp. 240–249

    Google Scholar 

  75. Den Hartog, J.P. (ed.): Mechanical Vibrations. Courier Corporation (1985)

    Google Scholar 

  76. Warburton, G.B., Ayorinde, E.O.: Optimum absorber parameters for simple systems. Earthq. Eng. Struct. Dyn. 8(3), 197–217 (1980)

    Article  Google Scholar 

  77. Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)

    Article  Google Scholar 

  78. Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 26(6), 617–636 (1997)

    Article  Google Scholar 

  79. Rana, R., Soong, T.T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)

    Article  Google Scholar 

  80. Chang, C.C.: Mass dampers and their optimal designs for building vibration control. Eng. Struct. 21(5), 454–463 (1999)

    Article  Google Scholar 

  81. Lin, C.C., Wang, J.F., Ueng, J.M.: Vibration control identification of seismically excited MDOF structure-PTMD systems. J. Sound Vib. 240(1), 87–115 (2001)

    Article  Google Scholar 

  82. Aldemir, U.: Optimal control of structures with semiactive-tuned mass dampers. J. Sound Vib. 266(4), 847–874 (2003)

    Article  MathSciNet  Google Scholar 

  83. Lee, C.L., Chen, Y.T., Chung, L.L., Wang, Y.P.: Optimal design theories and applications of tuned mass dampers. Eng. Struct. 28(1), 43–53 (2006)

    Article  Google Scholar 

  84. Bakre, S.V., Jangid, R.S.: Optimum parameters of tuned mass damper for damped main system. Struct. Control Health Monit. 14(3), 448–470 (2007)

    Article  Google Scholar 

  85. Hadi, M.N., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998)

    Article  Google Scholar 

  86. Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329(23), 4880–4890 (2010)

    Article  Google Scholar 

  87. Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31(4), 749–769 (2002)

    Article  Google Scholar 

  88. Desu, N.B., Deb, S.K., Dutta, A.: Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct. Control Health Monit. 13(5), 897–916 (2006)

    Article  Google Scholar 

  89. Pourzeynali, S., Lavasani, H.H., Modarayi, A.H.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29(3), 346–357 (2007)

    Article  Google Scholar 

  90. Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31(3), 715–728 (2009)

    Article  Google Scholar 

  91. Leung, A.Y., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dynam. 37(9), 1223–1246 (2008)

    Article  Google Scholar 

  92. Steinbuch, R.: Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. J. Bionic Eng. 8(3), 335–344 (2011)

    Article  Google Scholar 

  93. Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)

    Article  Google Scholar 

  94. Bekdaş, G., Nigdeli, S.M.: Optimization of tuned mass damper with harmony search. In: Gandomi, A.H., Yang, X.-S., Alavi, A.H., Talatahari, S. (eds.) Metaheuristic Applications in Structures and Infrastructures, Chapter 14. Elsevier, Waltham (2013)

    Google Scholar 

  95. Bekdaş, G., Nigdeli, S.M.: Mass ratio factor for optimum tuned mass damper strategies. Int. J. Mech. Sci. 71, 68–84 (2013)

    Article  Google Scholar 

  96. Nigdeli, S.M., Bekdas, G.: Optimum tuned mass damper design for preventing brittle fracture of RC buildings. Smart Struct. Syst. 12(2), 137–155 (2013)

    Article  Google Scholar 

  97. Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013)

    Article  Google Scholar 

  98. Farshidianfar, A.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6, 339–356 (2013)

    Article  Google Scholar 

  99. Farshidianfar, A.: Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Int. J. Optim. Civil Eng. 3, 409–429 (2013)

    Google Scholar 

  100. Federal Emergency Management Agency (FEMA): Quantification of Building Seismic Performance Factors (2009)

    Google Scholar 

  101. Pacific Earthquake Engineering Research Center (PEER NGA DATABASE). http://peer.berkeley.edu/nga

  102. Coello, C.C., Hernández, F.S., Farrera, F.A.: Optimal design of reinforced concrete beams using genetic algorithms. Expert Syst. Appl. 12(1), 101–108 (1997)

    Article  Google Scholar 

  103. Rafiq, M.Y., Southcombe, C.: Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Comput. Struct. 69(4), 443–457 (1998)

    Article  MATH  Google Scholar 

  104. Camp, C.V., Pezeshk, S., Hansson, H.: Flexural design of reinforced concrete frames using a genetic algorithm. J. Struct. Eng. 129(1), 105–115 (2003)

    Article  Google Scholar 

  105. Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete frames using genetic algorithms. Eng. Optim. 39(4), 471–494 (2007)

    Article  Google Scholar 

  106. Fedghouche, F., Tiliouine, B.: Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2. Eng. Struct. 42, 43–50 (2012)

    Article  Google Scholar 

  107. Talatahari, S., Sheikholeslami, R., Shadfaran, M., Pourbaba, M.: Optimum design of gravity retaining walls using charged system search algorithm. Math. Probl. Eng. (2012)

    Google Scholar 

  108. Poursha, M., Khoshnoudian, F., Moghadam, A.S.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civil Eng. 9(1), 1–8 (2011)

    Google Scholar 

  109. Bekdas, G., Nigdeli, S.M.: Optimization of T-shaped RC flexural members for different compressive strengths of concrete. Int. J. Mech. 7, 109–119 (2013)

    Google Scholar 

  110. Lepš, M., Šejnoha, M.: New approach to optimization of reinforced concrete beams. Comput. Struct. 81(18), 1957–1966 (2003)

    Google Scholar 

  111. Camp, C.V., Huq, F.: CO 2 and cost optimization of reinforced concrete frames using a Big Bang-Big Crunch algorithm. Eng. Struct. 48, 363–372 (2013)

    Article  Google Scholar 

  112. ACI 318 M-05: Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-She Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, XS., Bekdaş, G., Nigdeli, S.M. (2016). Review and Applications of Metaheuristic Algorithms in Civil Engineering. In: Yang, XS., Bekdaş, G., Nigdeli, S. (eds) Metaheuristics and Optimization in Civil Engineering. Modeling and Optimization in Science and Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-26245-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26245-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26243-7

  • Online ISBN: 978-3-319-26245-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics