Skip to main content

Telomeres Shortening: A Mere Replicometer?

  • Chapter
  • First Online:
Cellular Ageing and Replicative Senescence

Part of the book series: Healthy Ageing and Longevity ((HAL))

  • 1429 Accesses

Abstract

Telomeres are protective structures at the ends of linear chromosomes that play an important role in maintaining genomic stability. Telomere shortening, which occurs with each round of cell division, leads to a permanent proliferation arrest, also known as replicative senescence. This process has been shown to have important implications in vivo as an increase in the frequency of senescent cells occurs in mammalian tissue with age and in a variety of age-related diseases. Telomeres possess unique features, namely the presence of telomere-binding proteins collectively known as “shelterin”, that equally prevent telomere end-to-end fusions and the repair of damage induced by extrinsic and intrinsic stress. This inability to repair damage contributes to the activation of a persistent DNA damage response, which has been shown to be important in the establishment of cellular senescence. Evidence suggests that telomeres not only limit the proliferative potential of cells, but also act as highly sensitive sensors of stress in cells. This may be a protective mechanism against cancer, but also contribute to tissue dysfunction observed during ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiard S, Doudeau M, Pinte S, Poulet A, Lenain C, Faivre-Moskalenko C, Angelov D, Hug N, Vindigni A, Bouvet P, Paoletti J, Gilson E, Giraud-Panis MJ (2007) A topological mechanism for TRF2-enhanced strand invasion. Nat Struct Mol Biol 14(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Bae NS, Baumann P (2007) A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 26(3):323–334

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292(5519):1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl C, Lezoualc’h F, Trapp T, Widmann M, Skutella T, Holsboer F (1997) Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Bianchi A, Smith S, Chong L, Elias P, de Lange T (1997) TRF1 is a dimer and bends telomeric DNA. EMBO J 16(7):1785–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E (1997) Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 17(2):236–239

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106(6):661–673

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, Henderson E, Lee MS, Shampay J, Shippen-Lentz D (1989) Recognition and elongation of telomeres by telomerase. Genome 31(2):553–560

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  PubMed  Google Scholar 

  • Bombarde O, Boby C, Gomez D, Frit P, Giraud-Panis MJ, Gilson E, Salles B, Calsou P (2010) TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J 29(9):1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan TA, Egan KP, Lindborg CM, Chen Q, Sweetwyne MT, Hankenson KD, Xie SX, Johnson FB, Pignolo RJ (2014) Mouse models of telomere dysfunction phenocopy skeletal changes found in human age-related osteoporosis. Dis Model Mech 7(5):583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckingham EM, Klingelhutz AJ (2011) The role of telomeres in the ageing of human skin. Exp Dermatol 20(4):297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Yan LJ, Ratka A (2013) Telomere shortening and Alzheimer’s disease. NeuroMolecular Med 15(1):25–48

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  • Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395

    Article  CAS  PubMed  Google Scholar 

  • Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, Neumann AA, Reddel RR (2009) Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol 16(12):1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A 92(24):11190–11194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Fauce SR, Effros RB (2008) Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav Immun 22(4):600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105

    Article  CAS  PubMed  Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21(4):564–579

    Article  CAS  PubMed  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11(5):1921–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Article  PubMed  CAS  Google Scholar 

  • Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, Zou Y, Beversdorf DQ, Weng NP (2007) Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol 179(6):4249–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese A, Pariante CM, Caspi A, Taylor A, Poulton R (2007) Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 104(4):1319–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448(7157):1068–1071

    Article  CAS  PubMed  Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101(49):17312–17315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14(4):355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fyhrquist F, Saijonmaa O (2012) Telomere length and cardiovascular aging. Ann Med 44(Suppl 1):S138–S142

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Beccaria M, Martinez P, Flores JM, Blasco MA (2014) In vivo role of checkpoint kinase 2 in signaling telomere dysfunction. Aging Cell 13(5):810–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Goronzy JJ, Fujii H, Weyand CM (2006) Telomeres, immune aging and autoimmunity. Exp Gerontol 41(3):246–251

    Article  CAS  PubMed  Google Scholar 

  • Griffith J, Bianchi A, de Lange T (1998) TRF1 promotes parallel pairing of telomeric tracts in vitro. J Mol Biol 278(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514

    Article  CAS  PubMed  Google Scholar 

  • Guan JZ, Guan WP, Maeda T, Guoqing X, GuangZhi W, Makino N (2015) Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol Cell Biochem 400(1–2):183–187

    Article  CAS  PubMed  Google Scholar 

  • Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256(2–6):271–282

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460

    Article  CAS  PubMed  Google Scholar 

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346(6287):866–868

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P (2012) Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A 109(5):1743–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14(22):2807–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JJ, de Lange T (2004) Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 14(24):2302–2308

    Article  CAS  PubMed  Google Scholar 

  • Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadinanos J, Horner JW, Maratos-Flier E, Depinho RA (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128(1):36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283(5406):1321–1325

    Article  CAS  PubMed  Google Scholar 

  • Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JH, de Lange T (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol 2(8):E240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaul Z, Cesare AJ, Huschtscha LI, Neumann AA, Reddel RR (2012) Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 13(1):52–59

    Article  CAS  PubMed Central  Google Scholar 

  • Kruk PA, Rampino NJ, Bohr VA (1995) DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci U S A 92(1):258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574

    Article  CAS  PubMed  Google Scholar 

  • Lee OH, Kim H, He Q, Baek HJ, Yang D, Chen LY, Liang J, Chae HK, Safari A, Liu D, Songyang Z (2011) Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics 10(2):M110.001628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101(5):471–483

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Kaur P, Countryman P, Opresko PL, Wang H (2014) Unraveling secrets of telomeres: one molecule at a time. DNA Repair (Amst) 20:142–153

    Article  CAS  Google Scholar 

  • Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423(6943):1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Zhang Y, Liu D, Songyang Z, Wan M (2013) Telomeres-structure, function, and regulation. Exp Cell Res 319(2):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Ruiz CM, Baird D, Roger L, Boukamp P, Krunic D, Cawthon R, Dokter MM, van der Harst P, Bekaert S, de Meyer T, Roos G, Svenson U, Codd V, Samani NJ, McGlynn L, Shiels PG, Pooley KA, Dunning AM, Cooper R, Wong A, Kingston A, von Zglinicki T (2014) Reproducibility of telomere length assessment: an international collaborative study. Int J Epidemiol

    Google Scholar 

  • McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16(12):3705–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njajou OT, Hsueh WC, Blackburn EH, Newman AB, Wu SH, Li R, Simonsick EM, Harris TM, Cummings SR, Cawthon RM (2009) Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci 64(8):860–864

    Article  PubMed  CAS  Google Scholar 

  • O’Connor MS, Safari A, Xin H, Liu D, Songyang Z (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci U S A 103(32):11874–11879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oexle K, Zwirner A (1997) Advanced telomere shortening in respiratory chain disorders. Hum Mol Genet 6(6):905–908

    Article  CAS  PubMed  Google Scholar 

  • Oikawa S, Kawanishi S (1999) Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 453(3):365–368

    Article  CAS  PubMed  Google Scholar 

  • Olovnikov AM (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201(6):1496–1499

    CAS  PubMed  Google Scholar 

  • Opresko PL, Fan J, Danzy S, Wilson DM 3rd, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33(4):1230–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181

    PubMed  PubMed Central  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5(8):741–747

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5(5):e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511

    Article  PubMed  Google Scholar 

  • Petersen S, Saretzki G, von Zglinicki T (1998) Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 239(1):152–160

    Article  CAS  PubMed  Google Scholar 

  • Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42(11):1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saretzki G, Murphy MP, von Zglinicki T (2003) MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2(2):141–143

    Article  CAS  PubMed  Google Scholar 

  • Sarthy J, Bae NS, Scrafford J, Baumann P (2009) Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J 28(21):3390–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra V, von Zglinicki T, Lorenz M, Saretzki G (2003) Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 278(9):6824–6830

    Article  CAS  PubMed  Google Scholar 

  • Sfeir A (2012) Telomeres at a glance. J Cell Sci 125(Pt 18):4173–4178

    Article  CAS  PubMed  Google Scholar 

  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138(1):90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalev I (2012) Early life stress and telomere length: investigating the connection and possible mechanisms: a critical survey of the evidence base, research methodology and basic biology. Bioessays 34(11):943–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A, Mill J, Arseneault L, Caspi A (2013) Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry 18(5):576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20(5):1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12(19):1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48(1):58–67

    Article  CAS  PubMed  Google Scholar 

  • Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20(19):5532–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V, Fumagalli M, Di Micco R, Mirani N, Gurung RL, Hande MP, d’Adda di Fagagna F, Herbig U (2012) Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 31(13):2839–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44(4):647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL (2010) Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry 67(6):531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385(6618):740–743

    Article  PubMed  Google Scholar 

  • van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92(3):401–413

    Article  PubMed  Google Scholar 

  • von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 908:99–110

    Article  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  • von Zglinicki T (2012) Will your telomeres tell your future? BMJ 344:e1727

    Article  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220(1):186–193

    Article  Google Scholar 

  • von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28(1):64–74

    Article  Google Scholar 

  • Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445(7127):506–510

    Article  CAS  PubMed  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201

    Article  CAS  PubMed  Google Scholar 

  • Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421(6923):643–648

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Deng Y, Behringer RR, Chang S (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O’Connor MS, Songyang Z (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445(7127):559–562

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Neville R, Finkel T (2000) Homocysteine accelerates endothelial cell senescence. FEBS Lett 470(1):20–24

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wu X, Tang W, Luo Y (2012) Loss of p16(Ink4a) Function Rescues Cellular Senescence Induced by Telomere Dysfunction. Int J Mol Sci 13(5):5866–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Z, Shiue L, Kaplan S, de Lange T (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12(11):4834–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João F. Passos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Victorelli, S., Passos, J.F. (2016). Telomeres Shortening: A Mere Replicometer?. In: Rattan, S., Hayflick, L. (eds) Cellular Ageing and Replicative Senescence. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-26239-0_7

Download citation

Publish with us

Policies and ethics