Skip to main content

Evolutionary Modeling of Industrial Plants and Design of PID Controllers

Case Studies and Practical Applications

  • Chapter
  • First Online:
Nature-Inspired Computing for Control Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 40))

Abstract

This chapter brings forth the practical aspect of using genetic algorithms (GAs) in aiding PID (Proportional-Integral-Derivative) control design for real world industrial processes. Plants such water tanks, heaters, fans and motors are usually hard to tune on-site, especially after prolonged use of the equipment when degradation of performances is inevitable, while plants like seismic dampers have inherent nonlinear behaviors that make formal controller design difficult at best. Therefore, this chapter introduces a series of practical steps that can be taken by control engineers in order to (re)design viable PID controllers for their plants. This chapter describes how genetic algorithms can be applied to problems in control systems and model identification. Considering the plant inputs and outputs that can be observed during functioning, we offer a quick method for identifying model parameters, which can be used later by the genetic algorithm to find a suitable controller. While, in formal control theory, a raw estimation of the model parameters can significantly reduce the performance of a real-world system, the genetic algorithm method can find suitable controllers quickly and efficiently, offering access even to performance criteria that is hard to quantify in classical design procedure, such as integral indexes. The applicability of the GAs in real world problems is outlined through case studies that take into account the particularities of each system, from first to second order responses, the absence or presence of time delay, nonlinearities, constraints and controller performance. The steps performed in the case studies show how GAs have made the jump from their origins to a practicing engineer’s toolbox (GAOT-ECM in this case, a Genetic Algorithm Optimization Toolbox Extension for Control and Modeling). Moreover, a comprehensive analysis is performed, that takes into account both the various performance criteria, and the tuning parameters of the genetic algorithm, over the obtained models and controllers. The influence of the GA parameters is discussed in order to help practitioners choose the best suited GA configuration for their particular problem. In all, this chapter offers a comprehensive step-by-step application of genetic algorithms in industrial setting, from plant modeling to controller design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhotra, R., Singh, N., Singh, Y.: Genetic algorithms: Concepts, design for optimization of process controllers. Comput. Inf. Sci. 4(2), 39 (2011)

    Google Scholar 

  2. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pr. 10(11), 1223–1241 (2002)

    Article  Google Scholar 

  4. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms. In IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp. 1–6 (1993, May)

    Google Scholar 

  5. Lewin, D.R.: A genetic algorithm for MIMO feedback control system design. Adv. Control Chem. Process. 1994, 101 (2014)

    Google Scholar 

  6. Lewin, D.R.: Multivariable feedforward control design using disturbance cost maps and a genetic algorithm. Comput. Chem. Eng. 20(12), 1477–1489 (1996)

    Article  Google Scholar 

  7. Acosta-González, E., Fernández-Rodríguez, F.: Model selection via genetic algorithms illustrated with cross-country growth data. Empir. Econ. 33(2), 313–337 (2007)

    Article  Google Scholar 

  8. Huang, C.F.: A hybrid stock selection model using genetic algorithms and support vector regression. Appl. Soft Comput. 12(2), 807–818 (2012)

    Article  Google Scholar 

  9. Gray, G.J., Murray-Smith, D.J., Li, Y., et al.: Nonlinear model structure identification using genetic programming. Control Eng. Pr. 6(11), 1341–1352 (1998)

    Article  Google Scholar 

  10. Bush BO, Hosom JP, Kain A et al.: Using a Genetic Algorithm to Estimate Parameters of a Coarticulation Model. In: INTERSPEECH, pp. 2677–2680 (2011)

    Google Scholar 

  11. Castiglione, A., Cattaneo, G., Cembalo, M., et al.: Experimentations with source camera identification and Online Social Networks. J. Ambient Intell. Humaniz. Comput. 4(2), 265–274 (2013)

    Article  Google Scholar 

  12. Vatolkin, I., Preuß, M., Rudolph, G., et al.: Multi-objective evolutionary feature selection for instrument recognition in polyphonic audio mixtures. Soft. Comput. 16(12), 2027–2047 (2012)

    Article  Google Scholar 

  13. De Santis, A., Castiglione, A., Fiore, U., et al.: An intelligent security architecture for distributed firewalling environments. J. Ambient Intell. Humaniz. Comput. 4(2), 223–234 (2013)

    Article  Google Scholar 

  14. Alcalá-Fdez, J., Alcalá, R., Gacto, M.J., et al.: Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst. 160(7), 905–921 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shook, D.A., Roschke, P.N., Lin, P.Y., et al.: GA-optimized fuzzy logic control of a large-scale building for seismic loads. Eng. Struct. 30(2), 436–449 (2008)

    Article  Google Scholar 

  16. Linkens, D.A., Nyongesa, H.O.: Genetic algorithms for fuzzy control. 1. Offline system development and application. IEE Proc.-Control Theor. Appl. 142(3), 161–176 (1995)

    Google Scholar 

  17. Karr, C.L., Gentry, E.J.: Fuzzy control of pH using genetic algorithms. IEEE Trans. Fuzzy Syst 1(1), 46 (1993)

    Article  Google Scholar 

  18. Herrera, F., Lozano, M., Verdegay, J.L.: A learning process for fuzzy control rules using genetic algorithms. Fuzzy Sets Syst. 100(1), 143–158 (1998)

    Article  Google Scholar 

  19. Tao, Q., Liu, X., Xue, M.: A dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems. Appl. Math. Comput. 150(3), 11–820 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Javadi, A.A., Farmani, R., Tan, T.P.: A hybrid intelligent genetic algorithm. Adv. Eng. Inform. 19(4), 255–262 (2005)

    Article  Google Scholar 

  21. Leung, F.H., Lam, H.K., Ling, S.H., et al.: Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 14(1), 79–88 (2003)

    Article  Google Scholar 

  22. Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992., COGANN-92, pp. 1–37 (1992, June)

    Google Scholar 

  23. Zheng, Y.J., Ling, H.F.: Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach. Soft. Comput. 17(7), 1301–1314 (2013)

    Article  Google Scholar 

  24. Gibbs, M.S., Dandy, G.C., Maier, H.R.: A genetic algorithm calibration method based on convergence due to genetic drift. Inf. Sci. 178(14), 2857–2869 (2008)

    Article  Google Scholar 

  25. Chang, P.C., Huang, W.H., Ting, C.J.: Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems. Expert Syst. Appl. 37(3), 1863–1878 (2010)

    Article  Google Scholar 

  26. Togan, V., Daloglu, A.T.: An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. Struct. 86(11), 1204–1218 (2008)

    Article  Google Scholar 

  27. Patrascu, M., Stancu, A.F., Pop, F.: HELGA: a heterogeneous encoding lifelike genetic algorithm for population evolution modeling and simulation. Soft. Comput. 18(12), 2565–2576 (2014)

    Article  Google Scholar 

  28. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary algorithms. Soft. Comput. 17(7), 1121–1144 (2013)

    Article  MATH  Google Scholar 

  29. Mitsukura, Y., Yamamoto, T., Kaneda, M.: A genetic tuning algorithm of PID parameters. In: IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, 1997, vol. 1, pp. 923–928 (1997, October)

    Google Scholar 

  30. Ding, Y.M., Wang, X.Y.: Real-coded adaptive genetic algorithm applied to PID parameter optimization on a 6R manipulators. In: Fourth International Conference on Natural Computation, 2008. ICNC’08, vol. 1, pp. 635–639 (2008, October)

    Google Scholar 

  31. Chen, Y., Wu, Q.: Design and implementation of PID controller based on FPGA and genetic algorithm. In: 2011 International Conference on Electronics and Optoelectronics (ICEOE), vol. 4, pp.4–308 (2011, July)

    Google Scholar 

  32. Juang, J.G., Huang, M.T., Liu, W.K.: PID control using presearched genetic algorithms for a MIMO system. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(5), 716–727 (2008)

    Article  Google Scholar 

  33. Valarmathi, R., Theerthagiri, P.R., Rakeshkumar, S.: Design and analysis of genetic algorithm based controllers for non linear liquid tank system. In: 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 616–620 (2012, March)

    Google Scholar 

  34. Bi, J., Liu, D., Zhan, K.: PID parameters optimization for liquid level control system based on genetic algorithm. JDCTA: Int. J. Digital Content Technol. Appl. 6(1), 361–368 (2012)

    Google Scholar 

  35. Xiao-Gen, S., Li-Qing, X., Cheng-Chun, H.: Optimization of PID parameters based on genetic algorithm and interval algorithm. In: Control and Decision Conference, 2009. CCDC’09. Chinese, pp. 741–745 (2009, June)

    Google Scholar 

  36. Yuan, G., Xue, Y.G., Liu, J.: Adaptive immune genetic algorithm and its application in PID parameter optimization for main steam temperature control system. In: 2010 Third International Workshop on Advanced Computational Intelligence (IWACI), pp. 304–309 (2010)

    Google Scholar 

  37. Zhang, J., Zhuang, J., Du, H.: Self-organizing genetic algorithm based tuning of PID controllers. Inf. Sci. 179(7), 1007–1018 (2009)

    Article  MATH  Google Scholar 

  38. Lin, G., Liu, G.: Tuning PID controller using adaptive genetic algorithms. In: 2010 5th International Conference on Computer Science and Education (ICCSE), pp. 519–523 (2010)

    Google Scholar 

  39. Rani, M.R., Selamat, H., Zamzuri, H. et al.: PID controller optimization for a rotational inverted pendulum using genetic algorithm. In: 2011 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1–6 (2011)

    Google Scholar 

  40. Korkmaz, M., Aydogdu, Ö., Dogan, H.: Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller. In: 2012 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp. 1–5 (2012)

    Google Scholar 

  41. Ohri, J., Kumar, N., Chinda, M.: An improved genetic algorithm for PID parameter tuning. In: Proceedings of the 2014 International Conference on Circuits, Systems, Signal Processing (2014)

    Google Scholar 

  42. Saad, M.S., Jamaluddin, H., Darus, I.Z.: PID controller tuning using evolutionary algorithms. Wseas Trans. Syst. Control 7(4), 139–149 (2012)

    Google Scholar 

  43. Jaen-Cuellar, A.Y., Romero-Troncoso, R.D.J., Morales-Velazquez, L., et al.: PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv. Rob. Syst. 10, 324 (2013)

    Article  Google Scholar 

  44. Sadasivan, J., Mammen, O.: Genetic algorithm based parameter identification of three phase induction motors. Reproduction 31(10) (2011)

    Google Scholar 

  45. Megherbi, A.C., Megherbi, H., Benmahamed, K., et al.: Parameter Identification of Induction Motors using Variable-weighted Cost Function of Genetic Algorithms. J. Electr. Eng. Technol. 5(4), 597–605 (2010)

    Article  Google Scholar 

  46. Nithya Rani, N., Giriraj Kumar, S.M., Anantharaman, N.: Modeling and control of temperature process using genetic algorithm. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2(11) (2013)

    Google Scholar 

  47. Houck, C.R., Joines, J., Kay, M.G.: A genetic algorithm for function optimization: a Matlab implementation. NCSU-IE TR, 95(09) (1995)

    Google Scholar 

  48. Guldogan, E.U., Bulut, O., Tasgetiren, M.F.: A dynamic berth allocation problem with priority considerations under stochastic nature. In: Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, pp. 74–82. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  49. Meffert, K., Rotstan, N., Knowles, C. et al.: Jgap-java genetic algorithms and genetic programming package. http://jgap.sf.net (2012)

  50. Patrascu, M., Ion, A.: GAOT-ECM: Extension for Control and Modeling. http://www.mathworks.com/matlabcentral/fileexchange/51072-gaot-ecm–extension-for-control-and-modeling (2015). Accessed 7 Jul 2015

  51. Patrascu, M., Ion, A. GAOT-ECM Seismic Vibration Case Study. http://www.mathworks.com/matlabcentral/fileexchange/51131-gaot-ecm-seismic-vibration-case-study (2015). Accessed 7 Jul 2015

  52. Festo: Festo Water Tank Workstation. http://www.festo-didactic.com (2015). Accessed 7 Jul 2015

  53. LD DIDACTIC Group: ELWE Technik Air Mass and Temperature System. http://www.elwe-technology.com (2015). Accessed 7 Jul 2015

  54. Sims, N.D., Stanway, R., Johnson, A.R.: Vibration control using smart fluids: a state-of-the-art review. Shock Vib. Dig. 31(3), 195–203 (1999)

    Article  Google Scholar 

  55. Patrascu, M., Dumitrache, I., Patrut, P.: A comparative study for advanced seismic vibration control algorithms. UPB Sci. Bull. Series C, 74(4):3–16 (2012)

    Google Scholar 

  56. Patrascu, M., Dumitrache, I. Hybrid geno-fuzzy controller for seismic vibration control. In: 2012 UKACC International Conference on Control (CONTROL), pp. 52–57 (2012, September)

    Google Scholar 

  57. Spencer, Jr B.E., Carlson, J., Sain, M.K. et al. (1997, June). On the current status of magnetorheological dampers: seismic protection of full-scale structures. In American Control Conference, 1997. Proceedings of the 1997, vol. 1, pp. 58–462

    Google Scholar 

  58. Yan, G., Zhou, L.L.: Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers. J. Sound Vib. 296(1), 368–382 (2006)

    Article  Google Scholar 

  59. Patrascu, M.: Genetically enhanced modal controller design for seismic vibration in nonlinear multi-damper configuration. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 229(2), 158–168 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Patrascu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patrascu, M., Ion, A. (2016). Evolutionary Modeling of Industrial Plants and Design of PID Controllers. In: Espinosa, H. (eds) Nature-Inspired Computing for Control Systems. Studies in Systems, Decision and Control, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-26230-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26230-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26228-4

  • Online ISBN: 978-3-319-26230-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics