Skip to main content

Introduction

  • Chapter
  • First Online:
Biosurfactants of Lactic Acid Bacteria

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

  • 887 Accesses

Abstract

The Lactic acid bacteria (LAB), commonly associated with food and feed fermentation normally be inherent in the mucosal surfaces of healthy humans and animals. Microbial surface active agents are amphiphilic compounds produced commonly by microorganisms predominately bacteria and yeast on their cell surface, or extracellularly with exceptional surface and emulsifying activities. The physiological function of microbial surfactants in a producer cell is not entirely understood. On the contrary, there has been hypothesis about their involvement in emulsification of water insoluble substrates. Dissimilar to chemical surfactants, which are categorized according to the nature of their polar grouping, biosurfactants are categorized largely by their chemical composition and their microbial origin. Recent advances in biological disciplines and analytical approaches have focused about the enormous rise in biosurfactant for applications in environmental, bio medicine, food/feed, and cosmetics industries. The demand for novel biosurfactants in the cosmetics, food and pharmaceutical formulations, is progressively increasing and the biosurfactants with effective and eco-friendly composition, impeccably meet this demand. Most of the biosurfactant-producing microorganisms are pathogenic and challenging to handle in commercial formulations. The development of biosurfactant production from nonpathogenic microorganisms such as “Biosurfactant derived from LAB” is a prevailing task that is receiving increased attention in direction to escape pathogenicity. Detailed studies of their natural roles in microbial interactions, cell signaling, pathogenicity, and biofilm development could advocate significant future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17(5):1367–1371

    Article  CAS  Google Scholar 

  • Abdallah FB, Chaieb K, Zmantar T, Kallel H, Bakhrouf A (2009) Adherence assays and slime production of Vibrio alginolyticus and Vibrio parahaemolyticus. Braz J Microbiol 40(2):394–398

    Article  PubMed Central  PubMed  Google Scholar 

  • Adjonu R, Doran G, Torley P, Agboola S (2014) Whey protein peptides as components of nanoemulsions: a review of emulsifying and biological functionalities. J Food Eng 122:15–27

    Article  CAS  Google Scholar 

  • Agboola O, Maree J, and Mbaya R (2014) Characterization and performance of nanofiltration membranes. Environ chem Lett 12(2):241–255

    Google Scholar 

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzym Microbial Technol 27(10):749–754

    Article  CAS  Google Scholar 

  • Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofre E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174

    Article  CAS  PubMed  Google Scholar 

  • Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour Technol 98(1):237–240

    Article  PubMed  Google Scholar 

  • Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35(12):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51(1):1–12

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Samarah N, Murad M, Horne R, Banerjee S (1991) Biosurfactant production and use in oil tank clean-up. World J Microbiol Biotechnol 7(1):80–88

    Article  CAS  PubMed  Google Scholar 

  • Banat IM et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    Google Scholar 

  • Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol 97(6):868–875

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonmatin JM, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screening 6(6):541–556

    Article  CAS  Google Scholar 

  • Bueno J (2014) Anti-biofilm drug susceptibility testing methods: looking for new strategies against resistance mechanism. J Microbial Biochem Technol 2014

    Google Scholar 

  • Buijssen KJ, Harmsen HJ, van der Mei HC, Busscher HJ, van der Laan BF (2007) Lactobacilli: important in biofilm formation on voice prostheses. Otolaryngol Head Surg 137(3):505–507

    Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50(5):520–529

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266

    Article  CAS  PubMed  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta Biomembr 1611(1):91–97

    Google Scholar 

  • Chen XH et al (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1):27–37

    Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2(1):22–32

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72(9):1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Google Scholar 

  • Debode J, Maeyer KD, Perneel M, Pannecoucque J, Backer GD, Höfte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103(4):1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94(7):2667–2679

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dettenkofer M, Block C (2005) Hospital disinfection: efficacy and safety issues. Curr Opin Infect Dis 18(4):320–325

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Google Scholar 

  • Douillard FP, de Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Fact 13:S8

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiology Rev 15(2):155–166

    Google Scholar 

  • Dusane DH, Zinjarde SS, Venugopalan VP, Mclean RJ, Weber MM, Rahman PK (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27(1):159–184

    Article  CAS  PubMed  Google Scholar 

  • El Aidy S, van den Bogert B, Kleerebezem M (2015) The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 32:14–20

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Makris GC (2009) Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hosp Infect 71(4):301–306

    Article  CAS  PubMed  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112(9):1291–1299

    Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeterior Biodegradation 86:300–308

    Article  CAS  Google Scholar 

  • Fracchia L, Banat IM, Martinotti MG, Cavallo M (2012) Biosurfactants and bioemulsifiers biomedical and related applications-present status and future potentials. INTECH Open Access Publisher

    Google Scholar 

  • Fuentes MS et al (2014) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol 11(4):1147–1156

    Google Scholar 

  • Ghosh S, RingØ E, Selvam ADG, Rahiman KM, Sathyan N, John N, Hatha AAM (2014) Gut associated lactic acid bacteria isolated from the estuarine fish Mugil cephalus: molecular diversity and antibacterial activities against pathogens. Int J Aquac 4:1–11

    Google Scholar 

  • Grover M, Nain L, Singh SB, Saxena AK (2010) Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr Microbiol 60(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbio 2(2):95–108

    Google Scholar 

  • Hildebrand PD, Braun PG, McRae KB, Lu X (1998) Role of the biosurfactant viscosin in broccoli head rot caused by a pectolytic strain of Pseudomonas fluorescens. Can J Plant Pathol 20(3):296–303

    Article  CAS  Google Scholar 

  • Hua Z, Chen J, Lun S, Wang X (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 37(17):4143–4150

    Article  CAS  PubMed  Google Scholar 

  • Imamura, Y et al (2008) Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother 52(1):171–182

    Google Scholar 

  • Khire JM, Khan MI (1994) Microbially enhanced oil recovery (MEOR). Part 1. Importance and mechanism of MEOR. Enzym Microb Technol 16(2):170–172

    Google Scholar 

  • Khopade A, Ren B, Liu XY, Mahadik K, Zhang L, Kokare C (2012) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367(1):311–318

    Article  CAS  PubMed  Google Scholar 

  • Kim PI, Ryu J, Kim YH, ChI YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145

    CAS  PubMed  Google Scholar 

  • Kiran G, Seghal et al (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101(7):2389–2396

    Google Scholar 

  • Kotulova D, Slobodnikova, L (2010) Susceptibility of Staphylococcus aureus biofilms to vancomycin, gemtamicin and rifampin. Epidemiologie, mikrobiologie, imunologie: casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti JE Purkyne 59(2):80–87

    Google Scholar 

  • Kostka JE et al (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77(22):7962–7974

    Google Scholar 

  • Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2013) Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Int Biodeterior Biodegradation 81:133–140

    Article  CAS  Google Scholar 

  • Kulakovskaya TV, Golubev WI, Tomashevskaya MA, Kulakovskaya EV, Shashkov AS, Grachev AA, Nifantiev NE (2010) Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev W, Zinin A, Tsvetkov Y, Nifantiev N (2009) Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities. J Oleo Sci 58(3):133–140

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27

    Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bull Environ Contam Toxicol 79(6):617–621

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31(2):155–161

    Article  CAS  PubMed  Google Scholar 

  • Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97(6):2327–2339

    Article  PubMed Central  PubMed  Google Scholar 

  • Litzler PY et al (2007) Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species. J Thorac Cardiovasc Surg 134(4):1025–1032

    Google Scholar 

  • Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12(2):60–67

    Article  CAS  Google Scholar 

  • Maneerat S (2005) Production of biosurfactants using substrates from renewable-resources. Songklanakarin J. Sci. Technol 27(3):675–683

    Google Scholar 

  • Matsuyama T, Nakagawa Y (1996) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Methods 25(2):165–175

    Article  CAS  Google Scholar 

  • Matsuyama T, Tanikawa T, Nakagawa Y (2011) Serrawettins and other surfactants produced by Serratia. In: Soberón-Chávez G (ed) Biosurfactants. Springer, Berlin Heidelberg, pp 93–120

    Chapter  Google Scholar 

  • Merk K, Borelli C, Korting HC (2005) Lactobacilli–bacteria–host interactions with special regard to the urogenital tract. Int J Med Microbiol 295(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Zhang, Y (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. In: Sheehan D (ed) Bioremediation protocols, Humana Press, pp 59–66

    Google Scholar 

  • Mimee B et al (2005) Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob Agents Chemother 49(4):1597–1599

    Google Scholar 

  • Mohammadipour M, Mousivand M, Salehi Jouzani G, Abbasalizadeh S (2009) Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Can J Microbiol 55(4):395–404

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97(11):4691–4700

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14(5):372–378

    Article  CAS  Google Scholar 

  • Naruse N et al (1990) Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J Antibiot 43(3):267–280

    Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60(1):151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson RE, Ross T, Bowman JP (2011) Variability in biofilm production by Listeria monocytogenes correlated to strain origin and growth conditions. Int J Food Microbiol 150(1):14–24

    Google Scholar 

  • Nitschke M, Costa SG, Haddad R, Gonçalves G, Lireny A, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21(5):1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18(5):252–259

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2010) Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol 160(7):2066–2074

    Article  CAS  PubMed  Google Scholar 

  • Oliveira FJS, Vazquez L, De Campos NP, De Franca FP (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44(4):383–389

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA., Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304

    Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82(1–4):279–289

    Article  CAS  PubMed  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57(1):677–701

    Google Scholar 

  • Perfumo A, Smyth TJP, Marchant R, Banat IM (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 1501–1512

    Chapter  Google Scholar 

  • Pesci EC, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa. Cell-cell signaling in bacteria. American Society for Microbiology, Washington, pp 147–155

    Google Scholar 

  • Petrelli D et al (2006) Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur J Clin Microbiol Infect Dis 25(12):773–781

    Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Rahman PK, Gakpe E (2008) Production, characterisation and applications of biosurfactants−review. Biotechnology 7(2):360–370

    Article  CAS  Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168

    Article  CAS  Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83(3):541–553

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LR, Teixeira JA (2010) Biomedical and therapeutic applications of biosurfactants. In: Soberón-Chávez G (ed) Biosurfactants, Springer, New York, pp 75–87

    Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Van der Mei HC, Teixeira J, Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70(7):4408–4410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13(3):249–252

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8(3):313–316

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162

    Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016

    Google Scholar 

  • Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J 1:1–14

    Google Scholar 

  • Sauer K et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154

    Google Scholar 

  • Sekhon KK, Khanna S, Cameotra SS (2012) Biosurfactant production and potential correlation with esterase activity. J Pet Environ Biotechnol 3(7):133

    Google Scholar 

  • Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3(2):123–133

    Google Scholar 

  • Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23(2):512–515

    Google Scholar 

  • Sharma D, Singh Saharan B (2014) Simultaneous Production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol 2014

    Google Scholar 

  • Sharma D et al (2015) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SpringerPlus 4(1):1–14

    Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends in Biotechnol 22(3):142–146

    Google Scholar 

  • Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57(10):4287–4292

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209

    Google Scholar 

  • Stickler DJ (2008) Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5(11):598–608

    Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175(4):731–742

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Kruijt M, Raaijmakers JM (2008) Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. J Appl Microbiol 104(3):839–851

    Article  CAS  PubMed  Google Scholar 

  • Toren A et al (2002) Solubilization of polyaromatic hydrocarbons by recombinant bioemulsifier AlnA. Appl microbiol biotechnol 59(4–5):580–584

    Google Scholar 

  • Van Bogaert IN, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76(1):23–34

    Article  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24(6):604–620

    Article  PubMed  Google Scholar 

  • Vollenbroich D, Özel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25(3):289–297

    Article  CAS  PubMed  Google Scholar 

  • Walia NK, Cameotra SS (2015) Lipopeptides: Biosynthesis and Applications. J Microb Biochem Technol 7:103–107

    Google Scholar 

  • Zeraik AE, Nitschke M (2010) Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol 61(6):554–559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepansh Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Sharma, D., Saharan, B.S., Kapil, S. (2016). Introduction. In: Biosurfactants of Lactic Acid Bacteria. SpringerBriefs in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-26215-4_1

Download citation

Publish with us

Policies and ethics