Advertisement

Fuzzy Logic for Improving Interactive Evolutionary Computation Techniques for Ad Text Optimization

  • Quetzali MaderaEmail author
  • Mario Garcia
  • Oscar Castillo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 401)

Abstract

The description of a product or an ad’s text can be rewritten in many ways if other text fragments similar in meaning substitute different words or phrases. A good selection of words or phrases, composing an ad, is very important for the creation of an advertisement text, as the meaning of the text depends on this and it affects in a positive or a negative way the interest of the possible consumers towards the advertised product. In this paper we present a method for the optimization of advertisement texts through the use of interactive evolutionary computing techniques. The EvoSpace platform is used to perform the evolution of a text, resulting in an optimized text, which should have a better impact on its readers in terms of persuasion.

Keywords

Genetic Algorithm Evolutionary Algorithm Fuzzy Rule Paper Sheet Text Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McQuarrie, Edward F., David, M.: Visual rhetoric in advertising: Text-interpretive, experimental, and reader-response analyses. J. Consum. Res. 26(1), 37–54 (1999)CrossRefGoogle Scholar
  2. 2.
    De Jong, K.A.: Evolutionary computation–a unified approach. MIT Press, Cambridge (2006)Google Scholar
  3. 3.
    Bäck, T.: Evolutionary Algorithms In Theory And Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, vol. 996. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  4. 4.
    Whitley, D.: A genetic algorithm tutorial, Statistics and Computing, p. 65. Kluwer Academic Publishers 4.2, Norwell (1994)Google Scholar
  5. 5.
    Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275 (2001)CrossRefGoogle Scholar
  6. 6.
    Malcolm, J.A., Peter L.: An approach to detecting article spinning. In: Proceedings of the Third International Conference on Plagiarism (2008)Google Scholar
  7. 7.
    García, M., et al.: EvoSpace: a distributed evolutionary platform based on the tuple space model. In: Applications of Evolutionary Computation, pp. 499–508. Springer, Berlin (2013)Google Scholar
  8. 8.
    Davis, H.: Google Advertising Tools: Cashing in with AdSense, AdWords, and the Google APIs. O’reilly, Cambridge (2006)Google Scholar
  9. 9.
    Fernández, F., et al.: EvoSpace-interactivo: una herramienta para el arte y diseño interactivo y colaborativo, pp. 220–228. Algoritmos Evolutivos y Bioinspirados, IX Congreso Español de Metaheurísticas (2013)Google Scholar
  10. 10.
    Chevrolet.: Chevrolet Mexico Ad description (2013). http://www.chevrolet.com.mx/spark-2014.html.Accessed 12 Dec 2013
  11. 11.
    Hartigan, J.: Clustering Algorithms. Wiley, New York (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations