Intuitionistic Fuzzy Complete Lattices

  • Soheyb Milles
  • Ewa RakEmail author
  • Lemnaouar Zedam
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 401)


In this paper, the concept of intuitionistic complete lattices is introduced. Some characterizations of such intuitionistic complete lattices are given. The Tarski-Davis fixed point theorem for intuitionistic fuzzy complete lattices is proved, which establish an other criterion for completeness of intuitionistic fuzzy complete lattices in terms of fixed points of intuitionistic monotone maps.


Intuitionistic fuzzy set Intuitionistic fuzzy order Intuitionistic fuzzy complete lattice Tarski-Davis fixed point theorem 



This work is partially supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge No RPPK.\(01.03.00{-}18{-}001{/}10\).


  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets. VII ITKRs Scientific Session, Sofia (1983)zbMATHGoogle Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)Google Scholar
  3. 3.
    Atanassov, K.: Review and new results on intuitionistic fuzzy sets. IM-MFAIS 1 (1988)Google Scholar
  4. 4.
    Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33, 37–45 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Atanassov, K.: Remarks on the intuitionistic fuzzy sets. Fuzzy Sets Syst. 75, 401–402 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Biswas, R.: On fuzzy sets and intuitionistic fuzzy sets. NIFS 3, 3–11 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bělohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Log. 128, 277–298 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bodenhofer, U., Klawonn, F.: A formal study of linearity axioms for fuzzy orderings. Fuzzy Sets Syst. 145, 323–354 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Burillo, P., Bustince, H.: Estructuras algebraicas en conjuntos IFS. II Congreso nacional de lógica y tecnologia fuzzy, pp. 135–147. Boadilla del Monte, Madrid (1992)Google Scholar
  12. 12.
    Burillo, P., Bustince, H.: Intuitionistic fuzzy relations. (Part I), Mathw. Soft Comput. Mag. 2, 5–38 (1995)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Burillo, P., Bustince, H.: Intuitionistic fuzzy relations. (Part II), effect of Atanassov’s operators on the properties of the intuitionistic fuzzy relations. Mathw. Soft Comput. Mag. 2, 117–148 (1995)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Burillo, P., Bustince, H.: Antisymmetrical intuitionistic fuzzy relation. Order on the referential set induced by an bi fuzzy relation. Fuzzy Sets Syst. 62, 17–22 (1995)zbMATHGoogle Scholar
  15. 15.
    Burillo, P., Bustince, H.: Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 3, 293–303 (1996)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bustince, H.: Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets Syst. 3, 79–403 (2003)Google Scholar
  17. 17.
    Coppola, C., Gerla, G., Pacelli, T.: Convergence and fixed points by fuzzy orders. Fuzzy Sets Syst. 159, 1178–1190 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Davis, A.C.: A characterization of complete lattices. Pac. J. Math. 5, 311–319 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Deschrijver, G., Kerre, E.E.: On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst. 136, 333–361 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gerstenkorn, T., Manko, J.: Intuitionistic fuzzy probabilistic sets. Fuzzy Sets Syst. 71, 207–214 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Grzegorzewski, P., Mrówka, E.: Some notes on (Atanassov’s) intuitionistic fuzzy sets. Fuzzy Sets Syst. 156, 492–495 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tripathy, B.K., Satapathy, M.K., Choudhury, P.K.: Intuitionistic fuzzy lattices and intuitionistic fuzzy boolean algebras. Int. J. Eng. Technol. 5, 2352–2361 (2013)Google Scholar
  24. 24.
    Xu, Z.S.: Intuitionistic fuzzy preference relations and their application in group decision making. Inform. Sci. 177, 2363–2379 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy sets. Inf. Comput. 8, 338–353 (1965)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. 3, 177–200 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zedam, L., Amroune, A.: On the representation of L-M algebra by intuitionistic fuzzy subsets. Arima J. 4, 72–85 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Zedam, L., Amroune, A., Davvaz, B.: Szpilrajn theorem for intuitionistic fuzzy orderings. Annals of fuzzy mathematics and informatics, Article in press (2015)Google Scholar
  29. 29.
    Zhang, Q.Y., Xie, W., Fan, L.: Fuzzy complete lattices. Fuzzy Sets Syst. 160, 2275–2291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Pure and Applied Mathematics, Department of MathematicsMed Boudiaf University—MsilaMsilaAlgeria
  2. 2.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations