Skip to main content

Case Management

  • Chapter
  • First Online:
Pediatric Continuous Renal Replacement Therapy

Abstract

Below we have summarized our experience treating ten children with severe AKI complicated by sepsis, hyperkalemia, diuretic-resistant fluid overload, inborn error of metabolism, and/or organ dysfunction syndromes (MODS) treated with CRRT. All ten recovered completely, thus supporting the effectiveness of CRRT for the management of children who are critically ill due to AKI complicated by MODS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auron A, Brophy PD. Pediatric renal supportive therapies: the changing face of pediatric renal replacement approaches. Curr Opin Pediatr. 2010;22:183–8.

    Article  PubMed  Google Scholar 

  2. Boschee ED, Cave DA, Garros D, Lequier L, Granoski DA, Guerra GG, et al. Indications and outcomes in children receiving renal replacement therapy in pediatric intensive care. J Crit Care. 2014;29:37–42.

    Article  PubMed  Google Scholar 

  3. Brophy PD, Maxvold NJ, Bunchman TE. CAVH/CVVH in pediatric patients. In: Nissenson AR, Fine RN, editors. Dialysis therapy. 3rd ed. Philadelphia: Hanley & Belfus; 2002.

    Google Scholar 

  4. Bunchman TE, Maxvold NJ, Kershaw DB, et al. Continuous veno-venous hemodiafiltration in infants and children. Pediatr Nephrol. 1994;8:96–9.

    Article  CAS  PubMed  Google Scholar 

  5. Burchardi H. Renal replacement therapy (RRT) in the ICU: criteria for initiating RRT. In: Ronco C, Bellomo R, La Greca G, editors. Blood purification in intensive care (Contributions to Nephrology V 132- Berlyne GM and Ronco C). New York: Karger; 2001. p. 171–80.

    Chapter  Google Scholar 

  6. Clark WR, Mueller B, Kraus A, et al. Extracorporeal therapy requirements for patients with acute renal failure. J Am Soc Nephrol. 1997;8:804–12.

    CAS  PubMed  Google Scholar 

  7. Elahi MM, Lim MY, Joseph RN, et al. Early hemofiltration improves survival in post-cardiotomy patients with acute renal failure. Eur J Cardiothorac Surg. 2004;26(5):1027–31.

    Article  PubMed  Google Scholar 

  8. Goldstein SL. Continuous renal replacement therapy: mechanism of clearance, fluid removal, indications and outcomes. Curr Opin Pediatr. 2011;23:181–5.

    Article  PubMed  Google Scholar 

  9. Goldstein SL, Somers MJ, Baum M, et al. Pediatric patients with multi-organ system failure receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  10. Naka T, Wan L, Bellomo R, et al. Kidney failure associated with liver transplantation or liver failure: the impact of continuous veno-venous hemofiltration. Int J Artif Organs. 2004;27(11):949–55.

    CAS  PubMed  Google Scholar 

  11. Silvester W. Mediator removal with CRRT: complement and cytokines. Am J Kidney Dis. 1997;30(5 Suppl 4):S38–43.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YL, Hu WP, Zhou LH, Wang Y, Cheng A, Shao SN, Hon LL, Chen QY. Continuous renal replacement therapy in children with multiple organ dysfunction syndrome: a case series. Int Braz J Urol. 2014;40(6):846–52.

    Article  PubMed  Google Scholar 

  13. Zobel G, Ring E, Rödl S. Prognosis in pediatric patients with multiple organ system failure and continuous extracorporeal renal support. Contrib Nephrol. 1995;116:163–8.

    Article  CAS  PubMed  Google Scholar 

  14. Askenazi DJ, Goldstein MD, Koralkar R, Fortenberry MD, Baum M, et al. Continuous renal replacement therapy for children ≤10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162:587–92.

    Article  PubMed  Google Scholar 

  15. Gottlieb R, Assadi F. Continuous renal replacement therapy in newborn infants. In: Spitzer AR, editor. Intensive care of the fetus and neonate. Philadelphia: Mosby-Year Book; 1995. p. 1187–91.

    Google Scholar 

  16. Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.

    Article  PubMed  Google Scholar 

  17. Sohn YB, Paik KH, Cho HY, Kim SJ, Park SW, Kim ES, et al. Continuous renal replacement therapy in neonates weighing less than 3 kg. Korean J Pediatr. 2012;55(8):286–92.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Symons JM, Brophy PD, Gregory MJ, et al. Continuous renal replacement therapy in children up to 10 kg. Am J Kidney Dis. 2003;41(5):984–9.

    Article  PubMed  Google Scholar 

  19. Bunchman TE. Fluid overload in multiple organ dysfunction syndrome: a prediction of survival. Crit Care Med. 2004;32(8):1805–6.

    Article  PubMed  Google Scholar 

  20. Foland JA, Fortenberry JD, Warshaw BL, et al. Fluid over load before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.

    Article  PubMed  Google Scholar 

  21. Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19(12):1394–9.

    Article  PubMed  Google Scholar 

  22. Goldstein SL. Overview of pediatric renal replacement therapy in acute kidney injury. Semin Dial. 2009;22:180–4.

    Article  PubMed  Google Scholar 

  23. Mehta RL, Clark WC, Schetz M. Techniques for assessing and achieving fluid balance in acute renal failure. Curr Opin Crit Care. 2002;8:535–43.

    Article  PubMed  Google Scholar 

  24. Piccinni P, Dan M, Barbacini S, et al. Early isovolaemic haemofiltration in oliguric patients with septic shock. Intensive Care Med. 2006;32(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.

    Article  PubMed  Google Scholar 

  26. Baird JS, Wald EL. Long-term (>4wels) continuous renal replacement therapy in critical illness. Int J Artif Organs. 2010;33(10):716–20.

    PubMed  Google Scholar 

  27. Lopez-Herce J, Santiago MJ, Solana MJ, Urbano J, del Castillo J, Carrillo A, et al. Clinical course of children requiring prolonged continuous renal replacement therapy. Pediatr Nephrol. 2010;25(3):523–8.

    Article  PubMed  Google Scholar 

  28. Brophy PD, Mottes TA, Kudelka TL, et al. AN-69 membrane reactions are pH-dependent and preventable. Am J Kidney Dis. 2001;38(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  29. McDonald BR, Mehta RL. Transmembrane flux of IL-1B and TNF-alpha in patients undergoing continuous arteriovenous hemodialysis (CAVHD). J Am Soc Nephrol. 1990;1:368–71.

    Google Scholar 

  30. Bambauer R, Inniger R, Pirrung KJ, et al. Complications and side effects associated with large-bore catheters in the subclavian and internal jugular veins. Artif Organs. 1994;18:318–21.

    Article  CAS  PubMed  Google Scholar 

  31. Cimochowski GE, Worley E, Rutherford WE, et al. Superiority of the internal jugular over the subclavian access for temporary dialysis. Nephron. 1990;54:154–61.

    Article  CAS  PubMed  Google Scholar 

  32. Hackbarth R, Bunchman TE, Chue AN, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal support therapy: a report from the PCRRT registry. Int J Artif Organs. 2007;30:1116–21.

    CAS  PubMed  Google Scholar 

  33. Jenkins RD, Kuhn RJ, Funk JE. Clinical implications of catheter variability on neonatal continuous hemofiltration. Trans Am Soc Artif Intern Organs. 1998;34:108–11.

    Article  Google Scholar 

  34. McBryde KD, Bunchman TE, Kudelka TL, et al. Hyperosmolar solutions in continuous renal replacement therapy for hyperosmolar acute renal failure: a preliminary report. Pediatr Crit Care Med. 2005;6(2):228–39.

    Article  Google Scholar 

  35. Kim HJ, Park SL, Park KI, Lee JS, Eun HS, Kim JH, et al. Acute treatment of hyperammonemia by continuous renal replacement therapy in a newborn patient with ornithine transcarbamylase deficiency. Korean J Pediatr. 2011;54(10):425–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Deodato F, Boenzi S, Rizzo C, et al. Inborn errors of metabolism: an update on epidemiology and on neonatal-onset hyperammonemia. Acta Paediatr Suppl. 2004;93(445):18–21.

    CAS  PubMed  Google Scholar 

  37. McBryde KD, Kershaw DB, Bunchman TE, et al. Renal replacement therapy in the treatment of confirmed or suspected inborn errors of metabolism. J Pediatr. 2006;148(6):770–8.

    Article  PubMed  Google Scholar 

  38. Ronco C, Ricci Z. Pediatric continuous renal replacement: 20 years later. Intensive Care Med. 2015;41(6):985–93.

    Article  PubMed  Google Scholar 

  39. Gibney N, Hoste E, Burdmann EA, Bunchman T, Kher V, Viswanathan R, et al. Timing of initiation and discontinuation of renal replacement therapy in AKI: unanswered key questions. Clin J Am Soc Nephrol. 2008;3:876–80.

    Article  PubMed  Google Scholar 

  40. Paganini E, O’Hara P, Nakamoto S. Slow continuous ultrafiltration in hemodialysis resistant oliguric renal failure. Trans Am Soc Artif Intern Organs. 1984;30:173–8.

    CAS  PubMed  Google Scholar 

  41. Parakininkas D, Greenbaum LA. Comparison of solute clearance in three modes of continuous renal replacement therapy. Pediatr Crit Care Med. 2004;5(3):269–74.

    Article  PubMed  Google Scholar 

  42. Bauer SR, Salem C, Connor Jr MJ, Groszek J, Taylor ME, Wei P, Tolwani AJ, Fissell WH. Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol. 2012;7(3):452–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bugge JF. Pharmacokinetics and drug dosing adjustments during continuous venovenous hemofiltration or hemodiafiltration in critically ill patients. Acta Anaesthesiol Scand. 2001;45(8):929–34.

    Article  CAS  PubMed  Google Scholar 

  44. Kuang D, Verbine A, Ronco C. Pharmacokinetics and antimicrobial dosing adjustment in critically ill patients during continuous renal replacement therapy. Clin Nephrol. 2007;67:267–84.

    Article  CAS  PubMed  Google Scholar 

  45. Lau AH, Kronfol NO. Determinants of drug removal by continuous hemofiltration. Int J Artif Organs. 1994;17:373–8.

    CAS  PubMed  Google Scholar 

  46. Taylor CA, Abdel-Rahman E, Zimmerman SW, Johnson CA. Clinical pharmacokinetics during continuous ambulatory peritoneal dialysis. Clin Pharmacokinet. 1996;31:293–308.

    Article  CAS  PubMed  Google Scholar 

  47. Varghese JM, Jarrett P, Boots RJ, Kirkpatrick CM, Lipman J, Roberts J. Pharmacokinetics of piperacillin and tazobactam in plasma and subcutaneous interstitial fluid in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2014;43:343–48.

    Article  CAS  PubMed  Google Scholar 

  48. Vincent HH, Vos MC, Akcahuseyin E, Goessens WH, van Duyl WA, Schalekamp MA. Drug clearance by continuous haemodiafiltration: analysis of sieving coefficients and mass transfer coefficients of diffusion. Blood Purif. 1993;11:99–107.

    Article  CAS  PubMed  Google Scholar 

  49. Vos MC, Vincent HH, Yzerman EPF, Vogel M, Mouton JW. Drug clearance by continuous haemodiafiltration: results with the AN-69 capillary haemofilter and recommended dose adjustment for seven antibiotics. Drug Invest. 1994;7:315–22.

    Article  Google Scholar 

  50. Buckmaster JN, Davis AR. Guidelines for drug dosing during continuous renal replacement therapies. In: Ronco C, Bellomo R, editors. Critical care nephrology. Heidelberg: Springer; 1998. p. 1327–34.

    Chapter  Google Scholar 

  51. Carcelero E, Soy D. Antibiotic dose adjustment in the treatment of MRSA infections in patients with acute renal failure undergoing continuous renal replacement therapies. Enferm Infect Microbiol Clin. 2012;30(5):249–56.

    Article  Google Scholar 

  52. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principal of antibacterial dosing in continuous renal replacement therapy. Blood Purif. 2010;30:195–212.

    Article  CAS  PubMed  Google Scholar 

  53. Covajes C, Scolletta S, Penaccini L, Ocampos-Martinez E, Abdelhadii A, Beumier M, Jacobs F, de Backer D, Vincent JL, Taccone FS. Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy. Int J Antimicrob Agents. 2013;41:261–6.

    Article  CAS  PubMed  Google Scholar 

  54. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37:2268–82.

    Article  CAS  PubMed  Google Scholar 

  55. Li AM, Gomersall CD, Choi G, Tian Q, Joynt GM, Lipman J. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J Antimicrob Chemother. 2009;64:929–37.

    Article  CAS  PubMed  Google Scholar 

  56. Mattzke GR, Aronoff GR, Atkinson Jr AJ, et al. Drug dosing consideration in patients with acute and chronic kidney disease: a clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80:1120–37.

    Google Scholar 

  57. Reetze-Bonorden P, Böhler J, Keller E. Drug dosage in patients during continuous renal replacement therapy: pharmacokinetic and therapeutic considerations. Clin Pharmacokinet. 1993;24:362–79.

    Article  CAS  PubMed  Google Scholar 

  58. Subach RA, Marx MA. Drug dosing in acute renal failure: the role of renal replacement therapy in altering drug pharmacokinetics. Adv Ren Replace Ther. 1998;5:141–7.

    CAS  PubMed  Google Scholar 

  59. Veltri MA, Neu AM, Fivush BA, Parekh RS, Furth SL. Drug dosing during intermittent hemodialysis and continuous renal replacement therapy: special considerations in pediatric patients. Pediatr Drugs. 2004;6:45–65.

    Article  Google Scholar 

  60. Lameire N, Van Biesen W, Vanholder R. Electrolyte disturbances and acute kidney injury in patients with cancer. Semin Nephrol. 2010;30:534–47.

    Article  CAS  PubMed  Google Scholar 

  61. Macias WA, Clark WR. Acid base balance in continuous renal replacement therapy. Semin Dial. 1996;9:145–51.

    Article  Google Scholar 

  62. Assadi F. Strategies to reduce the incident of chronic kidney disease in children: time to change. J Nephrol. 2012;26:41–7.

    Article  Google Scholar 

  63. Goldstein SL, Devarajan P. Acute kidney injury leads to pediatric patient mortality. Nat Rev Nephrol. 2010;6:393–4.

    Article  PubMed  Google Scholar 

  64. Bagshaw SM. Epidemiology of renal recovery after acute renal failure. Curr Opin Crit Care. 2006;12(6):544–50.

    PubMed  Google Scholar 

  65. Bunchman TE, McBryde KD, Mottes TE, et al. Pediatric acute renal failure: outcome by modality and disease. Pediatr Nephrol. 2001;16(12):1067–71.

    Article  CAS  PubMed  Google Scholar 

  66. Coca SG, Yusuf B, Shlipak MG, et al. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:961–73.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Hui-Stickle S, Brewer ED, Goldstein SL. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis. 2005;45:96–101.

    Article  PubMed  Google Scholar 

  68. Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol. 2008;3:844–61.

    Article  PubMed  Google Scholar 

  69. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–35.

    Article  CAS  PubMed  Google Scholar 

  70. Roy AK, Mc Gorrian C, Treacy C, Kavanaugh E, Brenner A, Mahon NG, et al. A comparison of traditional and novel definition (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. Cardiorenal Med. 2013;3(1):26–37.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Argyri I, Xanthos T, Varsami M, Aroni F, Papalois A, Dontas I, et al. The role of novel biomarkers in early diagnosis of acute kidney injury in newborns. Am J Perinatol. 2013;30:347–52.

    Article  PubMed  Google Scholar 

  72. Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73:1008–16.

    Article  CAS  PubMed  Google Scholar 

  73. Devarajan P. Emerging urinary biomarkers in the diagnosis of acute kidney injury. Expert Opin Med Diagn. 2008;2:387–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Han WK, Waiker SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early detection of acute kidney injury. Kidney Int. 2008;73(7):863–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Liangos O, Tighiouart H, Perianayagam MC, Kolyada A, Han WK, Wald R, et al. Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers. 2009;14(6):423–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Fleming GM, Walters S, Goldstein SL, Alexander SR, Baum MA, Blowey DL, et al. Nonrenal indications for continuous renal replacement therapy: a report from the prospective pediatric continuous renal replacement therapy registry group. Pediatr Crit Care Med. 2012;13:e299–304.

    Article  PubMed  Google Scholar 

  77. Korneckki A, Tauman R, Lubetzky R, Sivan Y. Continuous renal replacement therapy for non-renal indications: experience in children. Isr Med Assoc J. 2002;4(5):345–8.

    Google Scholar 

  78. Bunchman TE. Wilson SE (eds) Vascular access: principles and practice. 4th ed. St. Louis: Mosby; 2002. Pediatr Nephrol. 2003;18(9):968.

    Google Scholar 

  79. Goonasekera CD, Wang J, Bunchman TE, Deep A. Factors affecting circuit life during continuous renal replacement therapy in children with liver failure. Ther Apher Dial. 2015;19(1):16–22.

    Article  PubMed  Google Scholar 

  80. Ricci Z, Guzzo I, Picca S, Picardo S. Circuit lifespan during continuous renal replacement therapy: children and adults are not equal. Crit Care. 2008;12(5):178.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Barenbrock M, Hausberg M, Marzkies F, et al. Effects of bicarbonate- and lactate- buffered replacement fluids on cardiovascular outcome in CVVH patients. Kidney Int. 2000;58:1751–7.

    Article  CAS  PubMed  Google Scholar 

  82. Bunchman TE, Maxvold NJ, Barnett J, et al. Pediatric hemofiltration: Normocarb® dialysate solution with citrate anticoagulation. Pediatr Nephrol. 2002;17:150–4.

    Article  PubMed  Google Scholar 

  83. Bunchman TE, Maxvold NJ, Brophy PD. Pediatric convective hemofiltration: Normocarb® replacement fluid and citrate anticoagulation. Am J Kidney Dis. 2003;42(6):1248–52.

    Article  PubMed  Google Scholar 

  84. Levraut J, Ciebiera JP, Jambou P, et al. Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med. 1997;25:58–62.

    Article  CAS  PubMed  Google Scholar 

  85. Roy D, Hogg RJ, Wilby PA, et al. Continuous veno-venous hemodiafiltration using bicarbonate dialysate. Pediatr Nephrol. 1997;11(6):680–3.

    Article  CAS  PubMed  Google Scholar 

  86. Tobe SW, Murphy PM, Goldberg P, et al. A new sterile bicarbonate dialysis solution for use during cardiopulmonary bypass. ASAIO J. 1999;45(3):157–9.

    Article  CAS  PubMed  Google Scholar 

  87. Zimmerman D, Cotman P, Ting R, et al. Continuous veno-venous haemodialysis with a novel bicarbonate dialysis solution: prospective cross-over comparison with a lactate buffered solution. Nephrol Dial Transplant. 1999;14:2387–91.

    Article  CAS  PubMed  Google Scholar 

  88. Bellomo R. Choosing a therapeutic modality: hemofiltration vs. hemodialysis vs. hemodiafiltration. Semin Dial. 1996;9:88–92.

    Google Scholar 

  89. Brophy PD, Somers MJ, Baum MA, et al. Multicenter evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20(7):1416–21.

    Article  PubMed  Google Scholar 

  90. Flynn JT. Choice of dialysis modality for management of pediatric acute renal failure. Pediatr Nephrol. 2002;17:61–9. AKI REVIEW.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang HL, Xue WJ, Li DQ, et al. Pre- vs. post-dilution CVVH. Blood Purif. 2005;23(4):338.

    Article  Google Scholar 

  92. Ronco C, Belomo R, Homel P, et al. Effects of different doses in continuous venovenous hemofiltration on outcomes of acute renal failure: a prospective randomized trial. Lancet. 2000;356:26–30.

    Article  CAS  PubMed  Google Scholar 

  93. Bressolle F, Kinowski JM, de la Coussaye JE, Wynn N, Eledjam JJ, Galtier M. Clinical pharmacokinetics during continuous haemofiltration. Clin Pharmacokinet. 1994;26:457–71.

    Article  CAS  PubMed  Google Scholar 

  94. Picca S, Dionisi-Vici C, Abeni D, et al. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol. 2001;16(11):862–7.

    Article  CAS  PubMed  Google Scholar 

  95. Bunchman TE, Gardner JJ, Kershaw DB, Maxvold NJ. Vascular access for hemodialysis or CVVH(D) in infants and children. Nephrol Dial Transplant. 1994;23:314–7.

    Google Scholar 

  96. Webb AR, Mythen MG, Jacobson D, et al. Maintaining blood flow in the extracorporeal circuit. Intensive Care Med. 1995;21:84–93.

    Article  CAS  PubMed  Google Scholar 

  97. Bareletta JF, Barletta GM, Brophy PD, Maxvold NJ, Hackbarth RM, Bunchman TE. Medication errors and patient complications with continuous renal replacement therapy. Pediatr Nephrol. 2006;21:842–5.

    Article  Google Scholar 

  98. Bunchman TE. Medication errors and patient complications with continuous renal replacement therapy. Pediatr Nephrol. 2006;21:842–5.

    Article  PubMed  Google Scholar 

  99. Churchwell MD, Mueller BA. Drug dosing during continuous renal replacement therapy. Semin Dial. 2009;22(2):185–8.

    Article  PubMed  Google Scholar 

  100. Connor Jr MJ, Salem C, Bauer SR, Hofmann CL, Groszek J, Butler R, Rehm SJ, Fissell WH. Therapeutic drug monitoring of piperacillin-tazobactam using spent dialysate effluent in patients receiving continuous venovenous hemodialysis. Antimicrob Agents Chemother. 2011;55:557–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Jamal JA, Economou CJ, Lipman J, Roberts JA. Improving antibiotic dosing in special situations in the ICU: burns, renal replacement therapy and extracorporeal membrane oxygenation. Curr Opin Crit Care. 2012;18:460–71.

    Article  PubMed  Google Scholar 

  102. Keller F, Böhler J, Czock D, Zellner D, Mertz AKH. Individualized drug dosage in patients treated with continuous hemofiltration. Kidney Int. 1999;56 Suppl 72:S29–31.

    Article  Google Scholar 

  103. Roder BL, Frimodt-Moller N, Espersen F, Rasmussen SN. Dicloxacillin and flucloxacillin: pharmacokinetics, protein binding and serum bactericidal titers in healthy subjects after oral administration. Infection. 1995;23:107–12.

    Article  CAS  PubMed  Google Scholar 

  104. Campbell IT. Limitations of nutrient intake: the effect of stressors: trauma, sepsis and multiple organ failure. Eur J Clin Nutr. 1999;53 Suppl 1:S143–7.

    Article  PubMed  Google Scholar 

  105. Castillo A, Santiago MJ, Lopez-Hirce J, Montoro S, Lopez J, Bustinza A, et al. Nutritional status and clinical outcome of children on continuous renal replacement therapy: a prospective observational study. BMC Nephrol. 2012;13:125.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Davies SP, Reaveley DA, Brown EA, Kox WJ. Amino acid clearance and daily losses in patients with acute renal failure treated by continuous arteriovenous hemodialysis. Crit Care Med. 1991;19(12):1510–5.

    Article  CAS  PubMed  Google Scholar 

  107. Hmiel SP, Martin RA, Landt M, et al. Amino acid clearance during acute metabolic decompensation in maple syrup urine disease treated with continuous venovenous hemodialysis with filtration. Pediatr Crit Care Med. 2004;5(3):278–81.

    Article  PubMed  Google Scholar 

  108. Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a comparison between CVVH and CVVHD therapies. Crit Care Med. 2000;28:1161–5.

    Article  CAS  PubMed  Google Scholar 

  109. McBryde KD, Kudelka TL, Kershaw DB, et al. Clearance of amino acids by hemodialysis in argininosuccinate synthetase deficiency. J Pediatr. 2004;144(4):536–40.

    Article  CAS  PubMed  Google Scholar 

  110. Meyer TW, Walther JL, Pagtalunan ME, et al. The clearance of protein bound solutes by hemofiltration and hemodiafiltration. Kidney Int. 2005;68(2):867–77.

    Article  CAS  PubMed  Google Scholar 

  111. Zappiteli M, Seymons JM, Somers MJG, et al. Protein and caloric intake prescription of children receiving continuous renal support therapy: a report from the prospective pediatric continuous renal support therapy registry group. Pediatr Crit Care Med. 2008;36:3239–45.

    Article  Google Scholar 

  112. Zappitelli M, Juarez M, Castillo L, Cross-Bu J, Gildstein SL. Continuous renal replacement therapy amino acid, trace element, and folate clearance in critically ill children. Intensive Care Med. 2009;35:698–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Assadi, F., Sharbaf, F.G. (2016). Case Management. In: Pediatric Continuous Renal Replacement Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-26202-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26202-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26201-7

  • Online ISBN: 978-3-319-26202-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics