Skip to main content

Relative Convex Hull Determination from Convex Hulls in the Plane

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9448))

Included in the following conference series:

Abstract

A new algorithm for the determination of the relative convex hull in the plane of a simple polygon A with respect to another simple polygon B which contains A, is proposed. The relative convex hull is also known as geodesic convex hull, and the problem of its determination in the plane is equivalent to find the shortest curve among all Jordan curves lying in the difference set of B and A and encircling A. Algorithms solving this problem known from Computational Geometry are based on the triangulation or similar decomposition of that difference set. The algorithm presented here does not use such decomposition, but it supposes that A and B are given as ordered sequences of vertices. The algorithm is based on convex hull calculations of A and B and of smaller polygons and polylines, it produces the output list of vertices of the relative convex hull from the sequence of vertices of the convex hull of A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: A linear-time combinatorial algorithm to find the orthogonal hull of an object on the digital plane. Inf. Sci. 216, 176–195 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ishaque, M., Toth, C.D.: Relative convex hulls in semi-dynamic arrangements. Algorithmica 68(2), 448–482 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Klette, G.: A recursive algorithm for calculating the relative convex hull. In: Proceedings of 25th International Conference on Image and Vision Computing, New Zealand, pp. 1-7. IEEE Computer Society (2010). doi:10.1109/IVCNZ.2010.6148857, 978-1-4244-9631-0/10

  4. Klette, G.: Recursive calculation of relative convex hulls. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 260–271. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Klette, G.: Recursive computation of minimum-length polygons. Comput. Vis. Image Underst. 117, 386–392 (2012)

    Article  Google Scholar 

  6. Klette, R., Kovalevsky, V., Yip, B.: On the length estimation of digital curves. In: SPIE Proceedings of Vision Geometry VIII, vol. 3811, pp. 117–129. SPIE (1999)

    Google Scholar 

  7. Klette, R.: Multigrid convergence of geometric features. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 318–338. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publ., Elsevier, USA (2004)

    MATH  Google Scholar 

  9. Lantuejoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121(1), 39–49 (1981)

    Article  Google Scholar 

  10. Lantuejoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recoglnition 17(2), 177–187 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, F., Klette, R.: Euclidean Shortest Paths, Exact or Approximate Algorithms. Springer, London (2011)

    Book  MATH  Google Scholar 

  12. Melkman, A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25, 11–12 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  14. Munkres, J.R.: Topology, 2nd edn. Prentice Hall, USA (2000)

    MATH  Google Scholar 

  15. Provençal, X., Lachaud, J.-O.: Two linear-time algorithms for computing the minimum length polygon of a digital contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Reyes Becerril, H.: Versión revisada de un algorítmo que determina la cubierta convexa relativa de polígonos simples en el plano, Master Thesis. Dept. of Automatic Control, CINVESTAV-IPN, Mexico City, September 2013

    Google Scholar 

  17. Robert, L., Faugeras, O.D.: Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair. Image Vis. Comput. 13(3), 189–196 (1995)

    Article  Google Scholar 

  18. Sklansky, J.: Recognition of convex blobs. Pattern Recognition 2, 3–10 (1970)

    Article  Google Scholar 

  19. Sklansky, J.: Measuring cavity on a rectangular mosaic. IEEE Trans. Comput. C–21(12), 1355–1364 (1972)

    Article  MathSciNet  Google Scholar 

  20. Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Trans. Syst. Man Cybern. 6(9), 637–647 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized silhouettes. IEEE Trans. Comput. 21(3), 260–268 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput. Appl. Math. 55, 369–383 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sloboda, F., Zatco, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160. Springer, Singapore (1998)

    Google Scholar 

  24. Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of a set of points in a polygon. In: Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2, pp. 853–856. North-Holland (1986)

    Google Scholar 

  25. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Invited paper, Special Issue on Geometric Reasoning, Revue D’Intelligence Artificielle 3(2), 9–42 (1989)

    Google Scholar 

  26. Toussaint, G.T.: On separating two simple polygons by a single translation. Discrete Comput. Geom. 4(1), 265–278 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wiederhold, P., Villafuerte, M.: Triangulation of cross-sectional digital straights segments and minimum length polygons for surface area estimation. In: Wiederhold, P., Barneva, R.P. (eds.) Progress in Combinatorial Image Analysis, pp. 79–92. Research Publishing Services, Singapore (2009)

    Google Scholar 

  28. Yu, L., Klette, R.: An approximative calculation of relative convex hulls for surface area estimation of 3D digital objects. ICPR 1, 131–134 (2002)

    Google Scholar 

Download references

Acknowledgement

The first author gratefully acknowledges support for this research from SEP and CONACYT Mexico, grant No. CB-2011-01-166223. The authors would like to thank very much to the reviewers for their careful study of the work, and for their constructive criticism and helpful comments which were important to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Wiederhold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wiederhold, P., Reyes, H. (2015). Relative Convex Hull Determination from Convex Hulls in the Plane. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26145-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26144-7

  • Online ISBN: 978-3-319-26145-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics