Advertisement

Scale Up Internet-Based Business Through Distributed Data Centers

  • Liguo Yu
  • Alok Mishra
  • Deepti Mishra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9416)

Abstract

Distributed data centers are becoming more and more important for internet-based companies. Without distributed data centers, it will be hard for internet companies to scale up their business. The traditional centralized data center suffers the drawback of bottle neck and single failure problem. Therefore, more and more internet companies are building distributed data centers, and more and more business are moved onto distributed Web services. This paper reviews the history of distributed Web services and studies their current status through examining the distributed data centers of several top Internet companies. Based on the study, we conclude that distributed services, including distributed data centers, are the key factors to scale up the business of a company, especially, an internet-based company.

Keywords

Web service Distributed Web service Data centers Distributed data centers Cloud computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Skoutas, D.N., Sacharidis, D., Kantere, V., Sellis, T.K.: Efficient semantic web service discovery in centralized and P2P environments. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 583–598. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    He, Q., Han, J., Yang, Y., Jin, H., Schneider, J.G., Versteeg, S.: Formulating Cost-Effective Monitoring Strategies for Service-Based Systems. IEEE Transactions on Software Engineering 40(5), 461–482 (2014)CrossRefGoogle Scholar
  12. 12.
    Katsaros, G., Kousiouris, G., Gogouvitis, S.V., et al.: A Self-adaptive hierarchical monitoring mechanism for Clouds. Journal of Systems and Software 85(5), 1029–1041 (2012)CrossRefGoogle Scholar
  13. 13.
    Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud. In: The 5th International Conference on Cloud Computing, pp. 423–430. IEEE (2012)Google Scholar
  14. 14.
    Bruneo, D., Distefano, S., Longo, F., Puliafito, A., Scarpa, M.: Workload-based software rejuvenation in cloud systems. IEEE Transactions on Computers 62, 1072–1085 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it is, and what it is not. In: ICAC, pp. 23–27, June 2013Google Scholar
  16. 16.
    Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for cloud platforms. In: The 3rd International Conference on Performance Engineering (2012)Google Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Science and InformaticsIndiana University South BendSouth BendUSA
  2. 2.Department of Software EngineeringAtilim UniversityIncekTurkey
  3. 3.School of ITMonash UniversitySubang JayaMalaysia
  4. 4.Department of Computer EngineeringAtilim UniversityIncekTurkey

Personalised recommendations