Advertisement

SAIL: A Domain-Specific Language for Semantic-Aided Automation of Interface Mapping in Enterprise Integration

  • Željko Vuković
  • Nikola Milanović
  • Renata Vaderna
  • Igor Dejanović
  • Gordana Milosavljević
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9416)

Abstract

Mapping elements of various interfaces is one of the most complex tasks in enterprise integration. Differences in the ways that these interfaces represent data in lead to the need of conflict detection and resolving. We present an approach where a structural model of the interfaces can be annotated with a semantic model and used together to (semi-)automate this process. A domain-specific language (DSL) is proposed that can be used to specify criteria for interface element mapping, define conflicts with steps for their resolution if possible, and how the resulting mappings will be translated into expressions needed for code generation. This DSL is intended to give the user the possibility to customise a prototype tool (which we have presented earlier) enabling us to practically test our approach and yield a real-world runnable implementation. Code generated by this tool is deployable to an enterprise service bus (ESB).

Keywords

Enterprise integration Domain specific language Ontology Semantic conflicts ESB Model-based 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Baltah, I.A., Ghani, A.A.A., Ab Rahman, W.N.W., Atan, R.: Semantic conflicts detection of heterogeneous messages of web services: Challenges and solution. Journal of Computer Science 10(8), 1428 (2014)CrossRefGoogle Scholar
  2. 2.
    Chalmeta, R., Pazos, V.: A step-by-step methodology for enterprise interoperability projects. Enterprise Information Systems 9(4), 436–464 (2015)CrossRefGoogle Scholar
  3. 3.
    Charalabidis, Y.: Revolutionizing Enterprise Interoperability through Scientific Foundations. IGI Global (2014)Google Scholar
  4. 4.
    Gagnon, M.: Ontology-based integration of data sources. In: 2007 10th International Conference on Information Fusion, pp. 1–8. IEEE (2007)Google Scholar
  5. 5.
    Gu, T., Pung, H.K., Zhang, D.Q.: Toward an osgi-based infrastructure for context-aware applications. IEEE Pervasive Computing 3(4), 66–74 (2004)CrossRefGoogle Scholar
  6. 6.
    He, W., Da, X., Da Xu, Y.: Integration of distributed enterprise applications: a survey. IEEE Transactions on Industrial Informatics 10(1), 35–42 (2014)CrossRefGoogle Scholar
  7. 7.
    Izza, S., Vincent, L., Burlat, P.: A framework for semantic enterprise integration. In: Interoperability of enterprise software and applications, pp. 75–86. Springer (2006)Google Scholar
  8. 8.
    Jardim-Goncalves, R., Coutinho, C., Cretan, A., da Silva, C.F., Ghodous, P.: Collaborative negotiation for ontology-driven enterprise businesses. Computers in Industry 65(9), 1232–1241 (2014)CrossRefGoogle Scholar
  9. 9.
    Kovanovic, V., Djuric, D.: Highway: a domain specific language for enterprise application integration. In: Proceedings of the 5th India Software Engineering Conference, pp. 33–36. ACM (2012)Google Scholar
  10. 10.
    Kutsche, R., Milanovic, N., Bauhoff, G., Baum, T., Cartsburg, M., Kumpe, D., Widiker, J.: Bizycle: model-based interoperability platform for software and data integration. In: Proceedings of the MDTPI at ECMDA 430 (2008)Google Scholar
  11. 11.
    Leicher, A., Busse, S., Süß, J.G.: Analysis of Compositional Conflicts in Component-Based Systems. In: Gschwind, T., Aßmann, U., Wang, J. (eds.) SC 2005. LNCS, vol. 3628, pp. 67–82. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  12. 12.
    Majchrzak, T.A., Jansen, T., Kuchen, H.: Efficiency evaluation of open source ETL tools. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 287–294. ACM (2011)Google Scholar
  13. 13.
    McAffer, J., Lemieux, J.M., Aniszczyk, C.: Eclipse rich client platform. Addison-Wesley Professional (2010)Google Scholar
  14. 14.
    Millham, R.: Integrating heterogeneous data for big data analysis. Handbook of Research on Cloud Infrastructures for Big Data Analytics p. 263 (2014)Google Scholar
  15. 15.
    Naiman, C.F., Ouksel, A.M.: A classification of semantic conflicts in heterogeneous database systems. Journal of Organizational Computing and Electronic Commerce 5(2), 167–193 (1995)CrossRefGoogle Scholar
  16. 16.
    Shtelma, M., Cartsburg, M., Milanovic, N.: Executable domain specific language for message-based system integration. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 622–626. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  17. 17.
    Sleiman, H.A., Sultán, A.W., Frantz, R.Z., Corchuelo, R.: Towards automatic code generation for EAI solutions using DSL tools. In: JISBD, pp. 134–145 (2009)Google Scholar
  18. 18.
    Vuković, Ž., Milanović, N., Bauhoff, G.: Prototype of a framework for ontology-aided semantic conflict resolution in enterprise integration. In: Society for Information Systems and Computer Networks, ICIST 2015, pp. 257–260 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Željko Vuković
    • 1
  • Nikola Milanović
    • 2
  • Renata Vaderna
    • 1
  • Igor Dejanović
    • 1
  • Gordana Milosavljević
    • 1
  1. 1.Faculty of Technical SciencesNovi SadSerbia
  2. 2.Optimal Systems GmbHBerlinGermany

Personalised recommendations