Advertisement

Finding Similar Artists from the Web of Data: A PageRank Based Semantic Similarity Metric

  • Phuong T. NguyenEmail author
  • Hong Anh Le
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9446)

Abstract

Since its commencement, the Linked Open Data cloud has been quickly become popular and offers rich data sources for quite a number of applications. The potential for application development using Linked Data is immense and needs intensive research efforts. Until now, the issue of how to efficiently exploit the data provided by the new platform remains an open research question. In this paper we present our investigation of utilizing a well-known encyclopedic dataset, DBpedia for finding similar musical artists. Our approach exploits a PageRank based semantic similarity metric for computing similarity in RDF graph. From the data provided by DBpedia, the similarity results help find out similar artists for a given artist. By doing this, we are also be able to examine the suitability of DBpedia for this type of recommendation tasks. Experimental results show that the outcomes are encouraging.

Keywords

Linked Open Data Personalized PageRank Semantic similarity 

References

  1. 1.
    Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)CrossRefGoogle Scholar
  2. 2.
    Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37(1), 141–188 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report, Stanford InfoLab (1999)Google Scholar
  4. 4.
    Wills, R.S.: Google’s PageRank: the math behind the search engine. J. Math. Intelligencer 28(4), 6–10 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rossi, R.A., Gleich, D.F.: Dynamic PageRank using evolving teleportation. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323, pp. 126–137. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Haveliwala, T.H.: Topic-sensitive PageRank. In: Proceedings of the 11th International Conference on World Wide Web (WWW 2002), pp. 517–526. ACM (2002)Google Scholar
  7. 7.
    Garla, V.N., Brandt, C.: Semantic similarity in the biomedical domain: an evaluation across knowledge sources. BMC Bioinformatics 13, 1–13 (2012)CrossRefGoogle Scholar
  8. 8.
    Agirre, E., Cuadros, M., Rigau, G., Soroa, A.: Exploring knowledge bases for similarity. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), pp. 19–21 (2010)Google Scholar
  9. 9.
    Agirre, E., Soroa, A.: Personalizing PageRank for word sense disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2009), pp. 33–41 (2009)Google Scholar
  10. 10.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Seman. Web J. (2015)Google Scholar
  11. 11.
    Rula, A., Zaveri, A: Methodology for assessment of linked data quality. In: Proceedings of the 1st Workshop on Linked Data Quality, LDQ@SEMANTiCS (2014)Google Scholar
  12. 12.
    Juran, J.M., Gryna, F.M.: Juran’s Quality Control Handbook. McGraw-Hill(Industrial engineering series), New York (1988)Google Scholar
  13. 13.
    Passant, A.: dbrec — Music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence (2010)Google Scholar
  15. 15.
    Freitas, A., Oliveira, J.G., O’Riain, S., Curry, E., Pereira da Silva, J.C.: Querying linked data using semantic relatedness: a vocabulary independent approach. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 40–51. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Freitas, A., Oliveira, J.G., O’Riain, S., Curry, E., Pereira da Silva, J.C.: Treo: best-effort natural language queries over linked data. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 286–289. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  17. 17.
    Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Proceedings of EDBT-ICDT 2012, pp. 116–123. ACM (2012)Google Scholar
  18. 18.
    Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems. In: Proceedings of RecSys 2009, pp. 117–124. ACM (2009)Google Scholar
  19. 19.
    Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of WWW 2014, ACM (2014)Google Scholar
  20. 20.
    Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: LDIF - linked data integration framework. In: Proceedings of COLD 2011 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Hanoi University of Mining and GeologyHanoiVietnam

Personalised recommendations