Enhancing the Quality of Medical Image Database Based on Kernels in Bandelet Domain

  • Nguyen Thanh BinhEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9446)


Diagnostic imaging has contributed significantly to improving the accuracy, timeliness and efficiency of healthcare. Most of medical images have blur combined with noise because of many reasons. This problem will give difficulties to health professionals because each of small details is very useful for the treatment process of doctors. In this paper, we proposed a new method to improve the quality of medical images. The proposed method includes two steps: denoising by Bayesian thresholding in bandelet domain and using the Kernels set for deblurring. We undervested the proposed method by calculating the PSNR and MSE values. This method gives the result better than the other recent methods available in literature.


Deblurring Denoising Bandelet domain Bayesian thresholding Kernels Medical image 


  1. 1.
    Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 15, 423–438 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mallat Cmap, S., Peyré Ceremade, G.: Orthogonal bandelet bases for geometric images approximation. Commun. Pure Appl. Math. LXI, 1173–1212 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Le Pennec, E., Mallat, S.: Bandelet image approximation and compression. SIAM J. Multiscale Simul. 4(3), 992–1039 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Binh, N.T., Tuyet, V.T.H., Vinh, P.C.: Ultrasound images denoising based context awareness in bandelet domain. In: Vinh, P.G., Alagar, V., Vassev, E., Khare, A. (eds.) ICCASA. LNICST, vol. 128, pp. 115–124. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Strang, G.: Wavelets and dilation equations: a brief introduction. SIAM Rev. 31(4), 614–627 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Edwards, T.: Discrete Wavelet Transforms: Theory and Implementation (1992)Google Scholar
  7. 7.
    Kociolek, M., Materka, A., Strzelecki, M., Szczypínski, P.: Discrete wavelet transform – derived features for digital image texture analysis. In: Proceedings of International Conference on Signals and Electronic Systems, pp. 163–168 (2001)Google Scholar
  8. 8.
    Binh, N.T., Khare, A.: Image Denoising, Deblurring and Object Tracking, A new Generation wavelet based approach. LAP LAMBERT Academic Publishing, Zurich (2013)Google Scholar
  9. 9.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)CrossRefGoogle Scholar
  10. 10.
    da Cunha, A.L., Zhou, J., Do, M.N.: Nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Proc. 1, 3089–3101 (2005)Google Scholar
  11. 11.
    da Cunha, A.L., Zhou, J., Do, M.N.: Nonsubsampled contourlet transform: filter design and applications in denoising (2006)Google Scholar
  12. 12.
    Candes, J.: Ridgelets: Theory and Applications. Stanford University, Stanford (1998)Google Scholar
  13. 13.
    Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets and curvelets for poisson noise removal. IEEE Trans. Image Process. 17, 1093–1108 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Donoho, D.L., Duncan, M.R.: Digital curvelet transform: strategy, implementation and experiments. In: Proceedings of SPIE, vol. 4056, pp. 12–29 (2000)Google Scholar
  15. 15.
    Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11, 670–684 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Binh, N.T., Khare, A.: Multilevel threshold based image denoising in curvelet domain. J. Comput. Sci. Technol. 25, 632–640 (2010)CrossRefGoogle Scholar
  17. 17.
    Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Abramovich, F., Sapatinas, T., Silverman, B.W.: Wavelet thresholding via a Bayesian approach. J. Roy. Stat. Soc. B 60, 725–749 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sitara, K., Remya, S.: Image deblurring in Bayesian framework using template based blur estimation. Int. J. Multimed. Appl. (IJMA) 4(1), 1–17 (2012)Google Scholar
  20. 20.
    Chui, M., Feng, Y., Wang, W., Li, Z., Xu, X.: Image denoising method with adaptive Bayes threshold in nonsubsampled contourlet domain. American Applied Science Research Institute (2012)Google Scholar
  21. 21.
    Lina, J.M., Mayrand, M.: Complex daubechies wavelets. J. Appl. Comput. Harmonic Anal. 2, 219–229 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Khare, A., Tiwary, U.S.: A new method for deblurring and denoising of medical images using complex wavelet transform. Engineering in Medicine and Biology Society, pp. 1897 –1900, IEEE (2005)Google Scholar
  23. 23.
    Candes, J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Khare, A., Tiwary, U.S.: Symmetric daubechies complex wavelet transform and its application to denoising and deblurring. WSEAS Trans. Signal Process. 2, 738–745 (2006)Google Scholar
  25. 25.
    Al-Ameen, Z., Sulong, G., Johar, M.G.M.: Fast deblurring method for computed tomography medical images using a novel kernels set. Int. J. Bio-Sci. Bio-Technol. 4(3), 9–20 (2012)Google Scholar
  26. 26.
    Zhang, W., Yu, F., Guo, H.: Improved adaptive wavelet threshold for image denoising. In: Control and Decision Conference, pp. 5958–5963, Chinese (2009)Google Scholar
  27. 27.
    Binh, N.T., Tuyet, V.T.H., Vinh, P.C.: Increasing the quality of medical images based on the combination of filters in ridgelet domain. In: Vinh, P.C., Vassev, E., Hinchey, M. (eds.) ICTCC 2014. LNICST, vol. 144, pp. 320–331. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  28. 28.
    Tuyet, V.T.H., Binh, N.T.: Reducing impurities in medical images based on curvelet domain. In: Vinh, P.C., Vassev, E., Hinchey, M. (eds.) ICTCC 2014. LNICST, vol. 144, pp. 306–319. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  29. 29.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Computer Science and EngineeringHo Chi Minh City University of TechnologyHo Chi Minh CityVietnam

Personalised recommendations