Skip to main content

Switching on Plant Immune Signaling Systems Using Microbe-Associated Molecular Patterns

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plants are endowed with innate immune system with ability to confer resistance against wide-range of oomycete, fungal, bacterial and viral pathogens. This basal resistance is not expressed in healthy unstressed plants. The pathogen associated molecular patterns (PAMPs)/microbe associated molecular patterns (MAMPs)/microbe-derived elicitors switch on various signaling systems activating the basal resistance. They can induce resistance against a wide range of biotrophic, hemibiotrophic, and necrotrophic pathogens. Thus engineering of PAMPs/MAMPs/elicitors may offer new opportunities for generating broad-spectrum disease resistance in various crops. Genetic engineering using genes encoding PAMPs may be highly effective in controlling diseases. Alternatively, formulations of the PAMPs can be developed and used as plant defense activators to manage wide-spectrum of diseases. The time of induction, intensity of induction, and duration of induction of the defense signals may vary depending on PAMPs. Amount of PAMP available in the plant-pathogen interaction site may determine the intensity of induced gene expression. Each PAMP may regulate distinctly different signaling pathway(s). Sometimes different PAMPs may induce the same signaling system, but the intensity of the defense signaling gene expression may differ. The same PAMP may behave differently in different plant system. A single PAMP may not be able to activate all the defense signaling-related genes and several PAMPs may be required to activate the complex signaling systems. PAMPs may act synergistically or antagonistically in inducing defense signaling. Some PAMPs have additive effect, while others show antagonistic effect between them. Selection of suitable PAMPs to manage different pathogens in different host plants is important in exploiting the PAMPs for disease management. Several commercial formulations of PAMPs/MAMPs/elicitors have been developed in different countries and widely used as foliar spray. The PAMP harpin formulation induces both local and systemic resistance in foliage and also induces resistance in fruits. Several factors such as environment, genotype, and crop nutrition determine the efficacy of harpin in controlling diseases under field conditions. The time of application is very critical in enhancing the efficacy of harpin in controlling diseases. Harpin should be applied before the pathogen invasion. The concentration of the harpin applied also determines the efficacy of the treatment in controlling diseases. Foliar application of harpin not only reduces disease incidence but also acts as a growth promoter. Bioengineering the genes encoding proteinaceous PAMPs such as harpins, elicitins, and flagellins has been found to be effective tool to manage crop diseases. Levels of the PAMP harpin gene expression may vary among different transgenic plant lines. The transgenic plants which show high level of expression of harpin gene expression show very high level of resistance, while the transgenic plants which show low level of expression of the harpin gene show very low level of resistance against pathogens, suggesting that the transgenic lines should be carefully selected to generate highly useful disease-resistant cultivars. Proper selection of promoters for developing transgenic disease-resistant plants using PAMP genes is necessary. Expression of harpin genes can be enhanced resulting in higher accumulation of harpin by properly selecting the promoter for gene transcription. A promoter of the rice phenylalanine ammonia-lyase (PAL) gene was used to regulate the expression of cryptogein (crypt) gene in tobacco. The PAL promoter had a low level of constitutive expression and was strongly induced by pathogen infection. The transgenic tobacco plants expressing cryptogein with the inducible PAL promoter showed significantly enhanced resistance against various pathogens, suggesting that low-level constitutive expression of elicitin gene may have potential use in generating broad-spectrum disease-resistant plants. The constitutive expression of elicitin gene in transgenic plants will be ideal to induce resistance against wide-range of pathogens. Continuous recognition of the elicitin signal has been shown to be a prerequisite for prolonged activation of signaling events in tobacco cells. However, elicitin is known to induce cell necrosis and hence constitutive overexpression of the gene may affect the agronomic characters of the transgenic plants. To reduce the phytotoxicity of the elicitin, transgenic plants harboring a pathogen-inducible promoter were developed to express the elicitin at low level. The gene encoding the proteinaceous elicitor FsphDNase shows DNase activity, which can cause damage of DNA within nuclei of plant cells. Constitutive activation of FsphDNase within the plant cell may be destructive. However, use of pathogen-inducible promoters overcomes the adverse effect and the transgenic tobacco plants expressing the elicitor gene showed no detectable morphological differences from the wild-type plants. These transgenic plants also showed enhanced resistance against fungal, bacterial, and oomycete pathogens. Selection of suitable pathogen-inducible promoter for expressing the elicitor gene appears to be a perquisite for developing disease-resistant plants without any reduction in yield potential. Collectively these studies suggest that the PAMPs have high potential to engineer and manipulate defense signaling systems to intervene in pathogensesis of a wide-range of pathogens. Transgenic plants are often considered as poor yielder with adverse agronomic characters. The major drawback in developing transgenic plants for management of crop diseases is in their adverse effect on crop growth and yield potential. However, the transgenic plants expressing harpin gene did not affect crop growth and yield characters. Technologies have also been developed to reduce the adverse effect of some PAMPs on plant growth characters by using pathogen-inducible promoters instead of using constitutively expressing promoters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam A, Pike S, Hoyos ME, Stone JM, Walker JC, Novacky A (1997) Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol 115:853–861

    PubMed Central  PubMed  CAS  Google Scholar 

  • Agostini JP, Bushong PM, Timmer LW (2003) Greenhouse evaluation of products that induce host resistance for control of scab, melanose, and Alternaria brown spot of citrus. Plant Dis 87:69–74

    Article  CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061–1089

    Article  CAS  Google Scholar 

  • Ait Barka E, Eullaffroy P, Clement C, Vernet G (2004) Chitosan improves development, and protects Vitis vinifera L against Botrytis cinerea. Plant Cell Rep 22:608–614

    Article  PubMed  CAS  Google Scholar 

  • Akbudak N, Akbudak B, Seniz V, Eris A (2006) Prehavest application of harpin on the cool storage life of pepper. Acta Hortic (ISHS) 712:517–522

    Article  Google Scholar 

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  PubMed  CAS  Google Scholar 

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alkan N, Fluhr R, Prusky D (2012) Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. Mol Plant-Microbe Interact 25:85–96

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268:735–737

    Article  PubMed  CAS  Google Scholar 

  • Alvarado VY, Scholthof HB (2009) Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 20:1032–1040

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amborabé B-E, Aziz A, Trotel-Aziz P, Quantinet D, Dhuicq L, Vernet G (2004) Stimulation des defenses naturelles de la vigne Essais d’emploi du chitosan contre Botrytis cinerea. Phytoma 571:26–29

    Google Scholar 

  • Amborabé B-E, Bonmort J, Fleurat-Lessard P, Roblin G (2008) Early events induced by chitosan on plant cells. J Expt Bot 59:2317–2324

    Article  CAS  Google Scholar 

  • Amelot N, de Dorthac B, San Clemente H, Mazars C, Grima-Pettenati J, Briẻre C (2012) Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways. Cell Calcium 51:117–130

    Article  PubMed  CAS  Google Scholar 

  • Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42:446–449

    Article  PubMed  CAS  Google Scholar 

  • Anil K, Podile AR (2012) HarpinPss-mediated enhancement in growth and biological control of late leaf spot in groundnut by a chlorothalonil-tolerant Bacillus thuringiensis SFC24. Microbiol Res 167:194–198

    Article  PubMed  CAS  Google Scholar 

  • Arenas YC, Kalkman ERIC, Schouten A, Dieho M, Vredenbregt P, Uwumukiza B, Ruiz MO, van Kan JAL (2010) Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiol Mol Plant Pathol 74:376–386

    Article  CAS  Google Scholar 

  • Aslam SN, Erbs G, Morrissey KL, Newman M-A, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM (2009) Microbe-associated molecular pattern (MAMP) signatures, synergy, size, and charge: influences on perception or mobility and host defense responses. Mol Plant Pathol 10:375–387

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92:215–221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Avni A, Bailey BA, Mattoo AK, Anderson JD (1994) Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase transcripts. Plant Physiol 106:1049–1055

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188–1194

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Gauthier A, Bezier A, Poinssot B, Joubert JM, Pugin A, Heyraud A, Baillieu F (2007) Elicitor and resistance-inducing activities of β-1,4 cellodextrins in grapevine, comparison with β-1,3 glucans and α-1,4 oligogalacturonides. J Expt Bot 58:1463–1472

    Article  CAS  Google Scholar 

  • Bailey BA, Dean JFD, Anderson AJ (1990) An ethylene biosynthesis-inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv. Xanthi leaves. Plant Physiol 94:1849–1854

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baillieul F, de Ruffray P, Kauffmann S (2003) Molecular cloning and biological activity of alpha-, beta-, and gamma-megaspermin, three elicitins secreted by Phytophthora megasperma H20. Plant Physiol 131:155–166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baker CJ, Orlandi EW, Mock NM (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol 102:1341–1344

    PubMed Central  PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  PubMed  CAS  Google Scholar 

  • Bar M, Avni A (2008) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611

    Article  CAS  Google Scholar 

  • Bar M, Sharfman M, Ron M, Avni A (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J 63:791–800

    Article  PubMed  CAS  Google Scholar 

  • Bardoel BW, van der Ent S, Pel MJC, Tommassen J, Pieterse CMJ, van Kessel KPM, van Strijp JAG (2011) Pseudomonas syringae evades immune recognition of flagellin in both mammals and plants. PLoS Pathog 7:e1002206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bauer DW, Wei Z-M, Beer SV, Coolmer A (1995) Erwinia chrysanthemi harpinEch, an elicitor of the hypersensitive response that contributes to soft rot pathogenesis. Mol Plant-Microbe Interact 8:484–491

    Article  PubMed  CAS  Google Scholar 

  • Belbahri L, Boucher C, Candresse T, Nicole M, Ricci P, Keller HA (2001) A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible interaction incompatible. Plant J 28:419–430

    Article  PubMed  CAS  Google Scholar 

  • Bell AA, Hubbard JC, Liu L, Davis RM, Subbarao KV (1998) Effects of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Dis 82:322–328

    Article  CAS  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact 26:271–277

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Benhamou N (1992) Ultrstructural and cytochemical aspects of chitosan on Fusarium oxysporum f. sp. radicis-lycopersici, agent of tomato crown and root rot. Phytopathology 82:1185–1193

    Article  CAS  Google Scholar 

  • Benhamou N (2004) Potential of mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: a comparison with the effect of chitosan. Phytopathology 94:693–705

    Article  PubMed  Google Scholar 

  • Benhamou N, Thériault G (1992) Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f sp radicis f sp lycopersici. Physiol Mol Plant Pathol 41:33–52

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1994) Induction of systemic resistance to Fusarium crown rot and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84:1432–1444

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance to Fusarium wilt of tomato by combination of chitosan and endophytic bacterial strain: Ultrastructurte and cytochemistry of host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Benhamou N, Bélanger RR, Rey P, Tirilly Y (2001) Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to crown and root rot in tomato plants. Plant Physiol Biochem 39:681–698

    Article  CAS  Google Scholar 

  • Benhamou N, Le Floch G, Vallance J, Gebore J, Grizard D, Rey P (2012) Pythium oligandrum: an example of opportunistic success. Microbiology 158:2679–2694

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant-Microbe Interact 17:763–770

    Article  PubMed  CAS  Google Scholar 

  • Bertoni G (2012) Oxylipins and plant palability. Plant Cell 24:1305

    Article  PubMed Central  CAS  Google Scholar 

  • Binet M, Humbert C, Lecourieux D, Vantard M, Pugin A (2001) Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiol 125:564–572

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Hoelder S, Kammerer L, Kutchan T, Mueller MJ, Xia Z-Q, Zenk MH (1995) The octadecanoid pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blein JP, Milat ML, Ricci P (1991) Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: Possible plasmalemma involvement. Plant Physiol 95:486–491

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blein JP, Coutos-Thevenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7:293–296

    Article  PubMed  CAS  Google Scholar 

  • Bohland C, Balkenhohl T, Loers G, Feussner I, Grambow HJ (1997) Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan, and methyl jasmonate. Plant Physiol 114:679–685

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of miceobe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Bonnet P, Poupet A, Abad P, Venard P, Cardin L (1986) Induction de nècroses foliaires, de protéines b et de resistance dans les interactions tabac-Phytophthora. Agronomie 6:829–837

    Article  Google Scholar 

  • Bonnet P, Bourdon E, Ponchet M, Blein J-P, Ricci P (1996) Acquired resistance triggered by elicitins in tobacco and other plants. Eur J Plant Pathol 102:181–192

    Article  CAS  Google Scholar 

  • Boonlertnirun S, Boonraung C, Suvannasara R (2008) Application of chitosan in rice production. J Metals Mater Miner 18:47–52

    CAS  Google Scholar 

  • Boonreung C, Boonlertnirun S (2013) Efficiency of chitosan for controlling dirty panicle disease in rice plants. ARPN J Agric Biol Sci 8:380–384

    CAS  Google Scholar 

  • Borejsza-Wysocka E, Kader AA, Norelli JL, Bauer DW, Garr ER, Beer SV, Aldwinckle HS (2000) Effect of expressing hrpN in apple on resistance to Erwinia amylovora. In Vitro Cell Dev Biol Anim 34:1023

    Google Scholar 

  • Borkowski J, Szwonek E (2004) Powdery mildew control on green-house tomatoes by chitosan and other selected substances. Acta Hortic 633:435–438

    Article  CAS  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzihi C, Staehelin A, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573

    Article  PubMed  CAS  Google Scholar 

  • Bottin A, Véronési C, Pontier D, Esquerré-Tugayé MT, Blein JP, Rustérucci C, Ricci P (1994) Differential responses of tobacco cells to elicitors from two Phytophthora species. Plant Physiol Biochem 32:373–378

    CAS  Google Scholar 

  • Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892

    Article  PubMed  CAS  Google Scholar 

  • Boureau T, Siamer S, Perino C, Gaubert S, Patrit O, Degrave A, Fagard M, Chevreau E, Barny MA (2011) The HrpN effector of Erwinia amylovora, which is involved in type III translocation, contributes directly or indirectly to callose elicitation on apple leaves. Mol Plant-Microbe Interact 24:577–584

    Article  PubMed  CAS  Google Scholar 

  • Bourque S, Binet MN, Ponchet M, Pugin A, Lebrun-Garcia A (1999) Characterization of the cryptogein binding sites on plant plasma membranes. J Biol Chem 274:34699–34705

    Article  PubMed  CAS  Google Scholar 

  • Brisson L, El-Bakkali-Taheri N, Giorgi M, Fadel A, Kaizer J, Rěglier M, Tron T, el Ajandouz H, Simaan AJ (2012) 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies. J Biol Inorg Chem 17:939–949

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    Article  PubMed  CAS  Google Scholar 

  • Brummer M, Arend M, Fromm J, Schlenzig A, Oßwald WF (2002) Ultrastructural changes and immunocytochemical localization of the elicitin quercinin in Quercus robur L roots infected with Phytophthora quercina. Physiol Mol Plant Pathol 61:109–120

    Article  CAS  Google Scholar 

  • Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215

    Article  PubMed  CAS  Google Scholar 

  • Bueter CL, Specht CA, Levitz SM (2013) Innate sensing of chitin and chitosan. PLoS Pathog 9(1):e1003080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Buhot N, Douliez J-P, Jacquemard A, Marion D, Tran V, Maume BF, Milat M-L, Ponchet M, Mikẻs V, Kader J-C, Blein J-P (2001) A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett 509:27–30

    Article  PubMed  CAS  Google Scholar 

  • Burketova L, Trda L, Ott P, Valentova O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotech Adv 33:994–1004. doi:10.1016/j.biotechadv.2015

    Article  CAS  Google Scholar 

  • Cabral A, Oome S, Sander N, Kūfner I, Nūrnberger T, van den Ackerveken G (2012) Nontoxic Nep-1 like proteins of the downy mildew pathogen Hyaloperonospora arabidopsis: Repression of necrosis-inducing activity by a surface-exposed region. Mol Plant-Microbe Interact 25:697–708

    Article  PubMed  CAS  Google Scholar 

  • Cai X-Z, Zhou X, Xu Y-P, Joosten MHAJ, deWit PJGM (2007) Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants. Plant Mol Biol 64:89–101

    Article  PubMed  CAS  Google Scholar 

  • Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7:e1002130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke J, Volko S, Dong X (1997) The Arabidopsis npr1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  PubMed  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: The future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chakraborty M, Karun A, Mitra A (2009) Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J Plant Physiol 166:63–71

    Article  PubMed  CAS  Google Scholar 

  • Chang X, Nick P (2012) Defense signaling triggered by flg22 and harpin is integrated into a different stilbene output in Vitis cells. PLoS ONE 7(7):e40446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Che FS, Nakajima Y, Tanaka N, Iwano M, Yoshida T, Takayama S, Kadota I, Isogai A (2000) Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem 275:32347–32356

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Hayes M, Beer SV, Dong H (2008a) Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 98:781–791

    Google Scholar 

  • Chen L, Zhang S-J, Zhang S-S, Qu S, Ren X, Long J, Yin Q, Qian J, Sun F, Zhang C, Wang L, Wu X, Wu T, Zhang Z, Cheng Z, Hayes M, Beer SV, Dong H (2008b) A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology 98:792–802

    Article  PubMed  Google Scholar 

  • Chen F, Gao J, Miao S, Yuan Y-X, Wang M-Y, Li Q, Mao B-Z, Jiang L-W, He ZH (2010) Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. Mol Plant 3:917–926

    Google Scholar 

  • Chen C-W, Panzeri D, Yeh Y-H, Kadota Y, Huang P-Y, Tao C-N, Roux M, Chien SC, Chin T-C, Chu P-W, Zipfel C, Zimmerli L (2014a) The Arabidopsis malectin-like leucine-rich repeat receptor-like kinase IOS1 associates with the pattern recognition receptors FLS2 and EFR and is critical for priming of pattern-triggered immunity. Plant Cell 26:3201–3219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, Ruan D, Zhou X, Wang J, Daudi A, Petzold CJ (2014b) An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant 7:874–892

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheong J-J, Birberg W, Fugedi P, Pilotti Å, Garegg PJ, Hong N, Ogawa T, Hahn MG (1991) Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3:127–136

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chern M, Canlas PE, Ronald PC (2008) Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repressive domain. Mol Plant 1:552–559

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chinchilla D, Boller T, Robatzek S (2007a) Flagellin signaling in plant immunity. Adv Exp Med Biol 598:358–371

    Article  PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007b) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  PubMed  CAS  Google Scholar 

  • Chirapongsatonkul N, Nak-udom P, Churngchow N (2008) Defense responses of calli and seeds of Hevea brasiliensis to zoospores and the elicitin of Phytophthora palmivora. J Phytopathol 156:732–741

    Article  Google Scholar 

  • Choi JJ, Klosterman SJ, Hadwiger LA (2001) A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death. Plant Physiol 125:752–762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choi JJ, Klosterman SJ, Hadwiger LA (2004) A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance. Phytopathology 94:651–660

    Article  PubMed  CAS  Google Scholar 

  • Choi HW, Lee DH, Hwang BK (2009) The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Mol Plant Microbe Interact 22:1389–1400

    Article  PubMed  CAS  Google Scholar 

  • Choi M-S, Heu S, Paek N-C, Koh H-J, Lee J-S, Oh C-S (2012) Expression of hpa1 gene encoding a bacterial harpin protein on Xanthomonas oryzae pv. oryzae enhances disease resistance to both fungal and bacterial pathogens in rice and Arabidopsis. Plant Pathol J 28:364–372

    Article  CAS  Google Scholar 

  • Choi M-S, Kim W, Lee C, Oh C-S (2013) Harpins, multifunctional proteins secreted by Gram-negative plant-pathogenic bacteria. Mol Plant-Microbe Interact 26:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Chrzanowski L, Lawniczak L, Czaczyk K (2012) Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol 28:401–419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chuang H-W, Hamrak A, Chen Y-C, Hsu C-M (2010) A harpin-induced ethylene–responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochem Biophys Res Commun 402:414–420

    Article  PubMed  CAS  Google Scholar 

  • Chuang H-W, Chang P-Y, Syu Y (2014) Harpin protein, an elicitor of disease resistance, acts as a growth promoter in Phalaenopsis orchids. J Growth Regul 33:788–797

    Article  CAS  Google Scholar 

  • Chun HJ, Park HC, Koo SC, Lee JH, Park CY, Choi MS, Kang CH, Baek D, Cheong YH, Yun DJ, Chung WS, Cho MJ, Kim MC (2012) Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol Cells 34:463–471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Churngchow N, Rattarasan M (2000) The elicitin secreted by Phytophthora palmivora, a rubber tree pathogen. Phytochemistry 54:33–38

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Mur LAJ, Darby RM, Kenton P (2005) Harpin modulates the accumulation of salicylic acid by Arabidopsis cells via apoplastic alkalization. J Expt Bot 56:3129–3136

    Article  CAS  Google Scholar 

  • Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial mobility. New Phytol 200:847–860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci U S A 97:9323–9328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Conrath U, Domard A, Kauss H (1989) Chitosan-elicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Reptr 8:152–154

    Article  CAS  Google Scholar 

  • Cordelier S, de Ruffray P, Fritig B, Kauffmann S (2003) Biological and molecular comparison between localized and systemic acquired resistance induced in tobacco by a Phytophthora megasperma glycoprotein elicitin. Plant Mol Biol 51:109–118

    Article  PubMed  CAS  Google Scholar 

  • Coursol S, Fromentin J, Noirot E, Briẻre C, Robert F, Morel J, Liang YK, Lherminier J, Simon-Plas F (2015) Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells. New Phytol 205:1239–1249. doi:10.1111/nph.13094

    Google Scholar 

  • Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signaling in plants: interplays with Ca2+ and protein kinases. J Expt Bot 59:155–163

    Article  CAS  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Culver JN, Dawson WO (1991) Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants. Mol Plant-Microbe Interact 4:458–463

    Article  CAS  Google Scholar 

  • Dafermos NG, Kasselaki AM, Goumas DE, Spantidakis K, Eyre MD, Leifert C (2012) Integration of elicitors and less-susceptible hybrids for the control of powdery mildew in organic tomato crops. Plant Dis 96:1506–1512

    Article  Google Scholar 

  • de Capdeville G, Beer SV, Wilson CL, Aist JR (2002) Alternative disease control agents induced resistance to blue mold in harvested ‘Red Delicious’ apple fruit. Phytopathology 92:900–908

    Article  PubMed  Google Scholar 

  • de Capdeville G, Beer SV, Watkins CB, Wilson CL, Tedeschi LO, Aist JR (2003) Pre- and post-harvest harpin treatments of apples induce resistance to blue mold. Plant Dis 87:39–44

    Google Scholar 

  • de Capdeville G, Beer SV, Wilson CL, Aist JR (2008) Some cellular correlates of harpin-induced resistance to blue mold of apples, Trop. Plant Pathol 33:103–113

    Google Scholar 

  • Deepak SA, Niranjan Raj S, Umemura K, Kono T, Shekar Shetty H (2003) Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Ann Appl Biol 143:169–173

    Article  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis suspension cell cultures. Biochem J 330:115–120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  PubMed  CAS  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor s’ecreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853

    Article  PubMed  CAS  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and NIM1 gene. Plant J 20:207–215

    Article  PubMed  CAS  Google Scholar 

  • Dong H-P, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect resistance. Plant Physiol 136:3628–3638

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Donghua J, Zejian G, Xujun C, Zhiqiang C, Zhong Z (2004) Study on tobacco disease resistances mediated by the elicitor gene cryptogein from Phytophthora cryptogea. Chin J Agric Biotechnol 1:125–131

    Article  Google Scholar 

  • Dorey S, Kopp M, Geoffroy P, Fritig B, Kauffmann S (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation or scopoletin consumption in elicitin-treated cultured tobacco cells. Plant Physiol 121:163–172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dornenburg H, Knorr D (1997) Evaluation of elicitor and high pressure induced enzymatic browning utilizing potato (Solanum tuberosum) suspension culture as a model for plant tissues. J Agric Food Chem 45:4173–4177

    Article  Google Scholar 

  • Drutskaya MS, Belousov PV, Nedopasov SA (2011) Innate mechanisms of viral recognition. Mol Biol 45:5–15

    Article  CAS  Google Scholar 

  • Du Q, Zhu W, Zhao Z, Qian X, Xu Y (2012) Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications. J Agric Food Chem 60:346–353

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose. Proc Natl Acad Sci U S A 95:10328–10333

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El Ghaouth A (1997) Biologically based alternatives to synthetic fungicides for the control of postharvest diseases. J Ind Microbiol Biotechnol 19:160–162

    Article  CAS  Google Scholar 

  • El Ghaouth A, Arul J, Benhamou N, Asselin A, Belanger RR (1994) Effect of chitosan on cucumber plants: suppression of Pythium aphanidematum and induction of defense reactions. Phytopathology 84:313–320

    Article  Google Scholar 

  • El-Ghaouth A, Smilanaick JL, Brown GE, Ippolito A, Wisniewski M, Wilson CL (2000) Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruit under semi-commercial conditions. Plant Dis 84:243–248

    Article  CAS  Google Scholar 

  • El-Maarouf H, Barny MA, Rona JP, Bouteau F (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett 497:82–84

    Article  PubMed  CAS  Google Scholar 

  • Elmer PAG, Reglinski T (2006) Biosuppression of Botrytis cinerea in grapes. Plant Pathol 55:155–177

    Article  Google Scholar 

  • Engelhardt S, Lee J, Gabler Y, Kemmerling B, Haapalainen ML, Li C-M, Wei Z, Keller H, Joosten M, Taira S, Nurnberger T (2009) Separable roles of the Pseudomonas syringae pv. phaseolicola accessary protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Plant J 57:706–717

    Article  PubMed  CAS  Google Scholar 

  • Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman M-A, Cooper RM (2008) Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: Structure and activity. Chem Biol 15:438–448

    Article  PubMed  CAS  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Aktell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18:67–75

    Article  PubMed  CAS  Google Scholar 

  • Espunya C, De Michele R, Gomez-Cadenas AA, Martinez MC (2012) S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J Expt Bot 63:3219–3227

    Article  CAS  Google Scholar 

  • Eulgem T, Weighman VJ, Chang H-S, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl JL (2004) Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol 135:1129–1144

    Google Scholar 

  • Fajardo JE, McCollum TG, McDonald RE, Mayer RT (1998) Differential induction of proteins in orange flavedo by biologically based elicitors and challenged by Penicillium digitatum Sacc. Biol Control 13:143–151

    Article  Google Scholar 

  • Faoro F, Iriti M (2007) Callose synthesis as a tool to screen chitosan efficacy in inducing plant resistance to pathogens. Caryolgia 60:121–124

    Article  Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–401

    Article  CAS  Google Scholar 

  • Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278:6201–6208

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Stefan Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nürnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defence in parsley and Arabidopsis. Plant J 32:375–390

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Hermann A, Hanstein S, Hückelhoven R, Kogel K-H (2004) Apoplasic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei. Mol Plant-Microbe Interact 17:118–123

    Article  PubMed  CAS  Google Scholar 

  • Fellers JP, Tremblay D, Handest MF, Lommel SA (2002) The Potato virus Y MSNR Nlb-replicase is the elicitor of a veinal necrosis-hypersensitive response in root knot nematode resistant tobacco. Mol Plant Pathol 3:145–152

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteinsm EDS1 and PAD4. EMBO J 20:5400–5411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fliegmann J, Mithöfer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative β-glucan elicitor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem 279:1132–1140

    Article  PubMed  CAS  Google Scholar 

  • Flocchetti F, D’Amore R, De Palma M, Bertini L, Caruso C, Caporale C, Testa A, Cristinzio G, Saccardo F, Tucci M (2008) Constitutive over-expression of two wheat pathogenesis-related genes enhances resistance of tobacco plants to Phytophthora nicotianae. Plant Cell Tissue Organ Cult 92:73–84

    Article  Google Scholar 

  • Foissner L, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  PubMed  CAS  Google Scholar 

  • Fontanilla M, Montes M, De Prado R (2005a) Effects of the foliar-applied protein “HarpinEa” (messenger) on tomatoes infected with Phytophthora infestans. Commun Agric Appl Biol Sci 70:41–45

    PubMed  CAS  Google Scholar 

  • Fontanilla M, Montes M, De Prado R (2005b) Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein “Harpin” (Messenger). Commun Agric Appl Biol Sci 70:35–40

    PubMed  CAS  Google Scholar 

  • Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants; a role as amino acid sensors in plant defence? F1000 Prime Rep 6:37. doi:10.12703/P6-37

    Google Scholar 

  • Fu ZQ, Guo M, Alfano JR (2006) Pseudomonas syringae HrpJ is a type III secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 harpin. J Bacteriol 188:6060–6069

    Google Scholar 

  • Fu M, Xu M, Zhou T, Wang D, Tian S, Han L, Dong H, Zhang C (2014) Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. J Exp Bot 65:1439–1453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fujiwara S, Tanaka N, Kaneda T, Takayama S, Isogai A, Che F-S (2004) Rice cDNA microarray-based gene expression profiling of the response to flagellin perception in cultured rice cells. Mol Plant-Microbe Interact 17:986–998

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Inagaki H, Takai R, Hirai H, Che F-S (2014) Two distinct EF-TU epitopes induce immune responses in rice and Arabidopsis. Mol Plant Microbe Interact 27:113–124

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Wen C-K, Binder BM, Chen Y-F, Chang J, Chiang Y-H, Kerris RJ III, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283:23801–23810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garcia AV, Hirt H (2014) Salmonella enterica induces and subverts the plant immune system. Front Microbiol 5:141. doi:10.3389/fmicb.2014.00141

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact 19:711–724

    Article  PubMed  CAS  Google Scholar 

  • Gaston B (1999) Nitric oxide and thiol groups. Biochim Biophys Acta 1411:323–333

    Article  PubMed  CAS  Google Scholar 

  • Gaulin E, Drame N, Lafitte C, Torto-Alalibo T, Martinez Y, Ameline-Torregrosa C, Khatib M, Mazarguil H, Villalba-Mateos F, Kamoun S, Mazars C, Dumas B, Bottin A, Esquerré-Tugayé M-T, Rickauer M (2006) Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766–1777

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gaupels F, Kuruthukulangarakoola GT, Durner J (2011) Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 14:704–714

    Article  CAS  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107:8023–8028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ger M-J, Louh G-Y, Lin Y-H, Feng T-Y, Huang H-E (2014) Ectopically expressed sweet pepper ferredoxin PFLP enhances disease resistance to Pectobacterium carotovorum subsp. carotovorum affected by harpin and protease-mediated hypersensitive response in Arabidopsis. Mol Plant Pathol 15:892–906. doi:10.1111/mpp.12150

    PubMed  CAS  Google Scholar 

  • Ghazala W, Varrelmann M (2007) Tobacco rattle virus 29 K movement protein is the elicitor of extreme and hypersensitive-like resistance in two cultivars of Solanum tuberosum. Mol Plant-Microbe Interact 20:1396–1405

    Article  PubMed  CAS  Google Scholar 

  • Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–1897

    Article  PubMed  CAS  Google Scholar 

  • Gilardi P, Garcia-Luque I, Serra MT (2004) The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum. J Gen Virol 85:2077–2085

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  PubMed  CAS  Google Scholar 

  • Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256

    Article  PubMed  Google Scholar 

  • Gorbatenko IY, Onischuk JA, Krivtsov GG, Vanyushin BF (1996) Eliciting and growth-regulating effects of chitosan on plants. Biol Bull Russ Acad Sci 23:327–330

    Google Scholar 

  • Graham JH, Leite RP (2004) Lack of control of citrus canker by induced systemic resistance compounds. Plant Dis 88:745–750

    Article  CAS  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 8:629–643

    Google Scholar 

  • Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Städele K, Ruzicka K, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  PubMed  CAS  Google Scholar 

  • Groen AJ, de Vries SC, Lilley KS (2008) A proteomics approach to membrane trafficking. Plant Physiol 147:1584–1589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gross A, Kapp D, Nielsen T, Niehaus K (2005) Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165:215–226

    Article  PubMed  CAS  Google Scholar 

  • Guan Y-J, Hu J, Wang X-J, Shao C-X (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejang Univ Sci B 10:427–433

    Article  CAS  Google Scholar 

  • Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJM, Bauwe H, Fernie AR, Kaiser WM, Mur LAJ (2013) The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot 64:553–568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nurnberger T (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282:32338–32348

    Google Scholar 

  • Haapalainen M, Engelhardt S, Küfner I, Li C-M, Nürnberger T, Lee J, Romantschuk M, Taira S (2011) Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Mol Plant Pathol 12:151–166

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger LA (2008) Pea-Fusarium solani interactions contributions of a system toward understanding disease resistance. Phytopathology 98:372–379

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger LA, Ogawa T, Kuyama H (1994) Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. Mol Plant-Microbe Interact 7:531–533

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger LA, Chang MM, Parsons A (1995) Fusarium solani DNase is a signal for increasing expression of nonhost disease resistance response genes, hypersensitivity, and pisatin production. Mol Plant-Microbe Interact 8:871–879

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D, Logemann E, Nürnberger T, Parniske M, Reinhold S, Sacks WR, Schmelzer E (1995) Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl Acad Sci U S A 92:4150–4157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hall HC, Samuel MA, Ellis BE (2007) SIPK conditions transcriptional responses unique to either bacterial or oomycete elicitation in tobacco. Mol Plant Pathol 8:581–594

    Article  PubMed  CAS  Google Scholar 

  • Hamel L-P, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232:787–806

    Article  PubMed  CAS  Google Scholar 

  • Hann DR, Rathjen JP (2007) Early events in the pathogenecity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49:607–618

    Article  PubMed  CAS  Google Scholar 

  • Hao G, Pitino M, Ding F, Lin H, Stover E, Duan Y (2014) Induction of innate immune responses by flagellin from the intracellular bacterium from the intracellular bacterium, ‘Candidatus Liberibacter solanacearum’. BMC Plant Biol 14:14211

    Article  CAS  Google Scholar 

  • Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hase S, Shimizu A, Nakaho K, Takenaka S, Takahashi H (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol 55:537–543

    Article  CAS  Google Scholar 

  • Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    Article  CAS  Google Scholar 

  • He SY, Huang HC, Collmer A (1993) Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plant cells. Cell 73:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hewajulige IGN, Sultanbawa Y, Wijeratnam RSW, Wijesundara RLC (2009) Mode of action of chitosan coating on anthracnose disease control in papaya. Phytoparasitica 37:437–444

    Article  CAS  Google Scholar 

  • Hirai H, Takai R, Iwano M, Nakai M, Kondo M, Takayama S, Isogai A, Che FS (2011) Glycosylation regulates specific induction of rice immune responses by Acidovorax avenae flagellin. J Biol Chem 286:25519–25530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoeberichts FA, Davoine C, Vandorpe M, Morsa S, Ksas B, Stassen C, Triantaphylidẻs C, Van Breusegem F (2013) Cryptogein-induced transcriptional reprogramming in tobacco is light dependent. Plant Physiol 163:263–275

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H (2007) The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant-Microbe Interact 20:72–81

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DL (2002) Control of gummy blight of watermelon with plant defense activators combined with fungicides. Proc Fla State Hortic Soc 115:183–186

    Google Scholar 

  • Hu X, Neill S, Cai W, Tang Z (2003) Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plantarum 118:414–421

    Article  CAS  Google Scholar 

  • Hu X-Y, Neill SJ, Cai WM, Tang Z-C (2004) Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell Res 14:234–240

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol Biochem 46:1106–1111

    Article  Google Scholar 

  • Hu Y, Cai J, Du Y, Lin J, Wang C, Xiong K (2009) Preparation and anti-TMV activity of guanidinylated chitosan hydrochloride. J Appl Polym Sci 112:3522–3528

    Article  CAS  Google Scholar 

  • Huang JW, Grunes DL, Kochian LV (1994) Voltage-dependent Ca2+ influx into right-side-out plasma membrane vesicles isolated from wheat roots. Proc Natl Acad Sci U S A 91:3473–3477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huo R, Wang Y, Ma L, Qiao J, Shao M, Gao X (2010) Assessment of inheritance pattern and agronomic performance of transgenic rapeseed having harpinXooC-encoding hrf2 gene. Transgenic Res 19:841–847

    Article  PubMed  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ichiropoulos H, al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279–282

    Google Scholar 

  • Iriti M, Faoro F (2007) Review of innate and specific immunity in plants and animals. Mycopathologia 164:57–64

    Article  PubMed  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to Tobacco necrosis virus (TNV). Plant Physiol Biochem 46:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4:66–68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iriti M, Sironi M, Gomarasca S, Casazza AP, Soave C, Faoro F (2006) Cell death-mediated antiviral effect of chitosan in tobacco. Plant Physiol Biochem 44:893–900

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Vitalini S, Di Tommaso G, D’Amico S, Borgo M, Faoro F (2011) New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Aust J Grape Wine Res 17:263–269

    Article  CAS  Google Scholar 

  • Isebaert S, Verhoeven R, Haesaert G (2002) Disease control by means of induced resistance. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67:159–164

    PubMed  CAS  Google Scholar 

  • Ishiga Y, Takeuchi K, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2005) Defense responses of Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tabaci wild type and defective mutants for flagellin (ΔfliC) and flagellin-glycosylation (Δorf1). J Gen Plant Pathol 71:302–307

    Article  CAS  Google Scholar 

  • Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y (2002) Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol Plant-Microbe Interact 15:515–521

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A 94:4800–4805

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jang YS, Sohn SI, Wang MH (2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223:449–456

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj J, Rahman M, Wan A, Punja ZK (2009) Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann Appl Biol 155:71–80

    Article  CAS  Google Scholar 

  • Jehle AK, Fürst U, Lipschis M, Albert M, Felix G (2013a) Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor-like protein ReMAX and the receptor-kinase SOBIR. Plant Signal Behav 8e27408:PMID 24384530

    Google Scholar 

  • Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mannaghani V, Fürst U, Mueller K, Felix G (2013b) The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25:2330–2340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion bodies are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  PubMed  CAS  Google Scholar 

  • Jenner CE, Wang X, Tomimura K, Ohshima F, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant-Microbe Interact 16:777–784

    Article  PubMed  CAS  Google Scholar 

  • Jeworutzki E, Roelfsema MR, Anschütz U, Krol E, Elzenga JT, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378

    Article  PubMed  CAS  Google Scholar 

  • Jones J (2001) Harpin. Pestic Outlook 12(August):134–135

    Google Scholar 

  • Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K (2004) Cryptogein-induced initial events in tobacco BY-2 cells: pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant Cell Physiol 45:160–170

    Article  PubMed  CAS  Google Scholar 

  • Kadota Y, Fujii S, Ogasawara Y, Maeda Y, Higashi K, Kuchitsu K (2006) Continuous recognition of the elicitor signal for several hours is prerequisite for induction of cell death and prolonged activation of signaling events in tobacco BY-2 cells. Plant Cell Physiol 47:1337–1342

    Article  PubMed  CAS  Google Scholar 

  • Kanneganti T-D, Huitema E, Cakir C, Kamoun S (2006) Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PinPP1.1 and INF1 elicitin. Mol Plant-Microbe Interact 19:854–863

    Article  PubMed  CAS  Google Scholar 

  • Kariola T, Palomäki TA, Brader G, Palva ET (2003) Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis, Mol. Plant-Microbe Interact 16:179–187

    Article  CAS  Google Scholar 

  • Karita E, Yamakawa H, Mitsuhara I, Kuchitsu K, Ohashi Y (2004) Three types of tobacco calmodulins characteristically activate plant NAD kinase at different Ca2+ concentrations and pHs. Plant Cell Physiol 45:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Kasparovsky T, Milat M-L, Humbert C, Blein J-P, Havel L, Mikes V (2003) Elicitation of tobacco cells with ergosterol activates a signal pathway including mobilization of internal calcium. Plant Physiol Biochem 41:495–501

    Article  CAS  Google Scholar 

  • Kasparovsky T, Blein JP, Mikes V (2004) Ergosterol elicits burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol Biochem 42:429–435

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W, Domard A (1989) The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta 184:8–13

    Google Scholar 

  • Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H (2009) Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol 50:924–934

    Article  PubMed  CAS  Google Scholar 

  • Keinath AP, Holmes GJ, Everts KL, Egel DS, Langston JDB (2007) Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Protect 26:83–88

    Article  CAS  Google Scholar 

  • Keller H, Blein J-P, Bonnet P, Bourdon E, Panabières F, Ricci P (1994) Responses of tobacco to elicitins, proteins from Phytophthora spp eliciting acquired resistance. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interactions, vol 3. Springer, New York, pp 327–332

    Chapter  Google Scholar 

  • Keller H, Bonnet P, Galiana E, Pruvot L, Friedrich L, Ryals J, Ricci P (1996) Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. Mol Plant-Microbe Interact 9:696–703

    Article  CAS  Google Scholar 

  • Keller H, Czernic P, Ponchet M, Ducrot PH, Back K, Chappell J, Ricci P, Marco Y (1998) Sesquiterpene cyclase is not a determining factor for elicitor- and pathogen-induced capsidiol accumulation in tobacco. Planta 205:467–476

    Article  CAS  Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier J-L, Roby D, Ricci P (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khatib M, Lafitte C, Esquerré-Tugayé M-T, Bottin A, Rickauer M (2004) The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol 162:501–510

    Article  CAS  Google Scholar 

  • Kim HS, Delaney TP (2002) Overexpression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32:151–163

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Lec JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manage Sci 56:1029–1035

    Article  CAS  Google Scholar 

  • Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv glycines HpaG pathogenicity island. J Bacteriol 185:3155–3166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, Kang C, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A 101:1455–1460

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klosterman SJ, Chen J, Choi JJ, Chinn EE, Hadwiger LA (2001) Characterization of a 20 kDa DNase elicitor from Fusarium solani f. sp. phaseoli and its expression at the onset of induced resistance in Pisum sativum. Mol Plant Pathol 2:147–158

    Article  PubMed  CAS  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant-Microbe Interact 20:120–128

    Article  PubMed  CAS  Google Scholar 

  • Koehl J, Oszwald W, Kohn H, Elstner EF, Heiser I (2003) Different responses of two tobacco cultivars and their cell suspension cultures to quercinin, a novel elicitin from Phytophthora quercina. Plant Physiol Biochem 41:261–269

    Article  CAS  Google Scholar 

  • Köhle H, Young DH, Kauss H (1984) Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. Plant Sci Lett 33:221–230

    Article  Google Scholar 

  • Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan elicited callose synthesis in soybean cells as a Ca2+dependent process. Plant Physiol 77(544):551

    Google Scholar 

  • Kowlaski B, Terry FJ, Herrera L, Peñalver DA (2006) Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49:167–176

    Article  CAS  Google Scholar 

  • Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant-Microbe Interact 17:131–139

    Article  PubMed  CAS  Google Scholar 

  • Kravchuk Z, Vicedo B, Flors V, Camańes G, González-Bosch C, Garcia-Agustin P (2011) Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. J Plant Physiol 186:359–366

    Article  CAS  Google Scholar 

  • Kudla J, Batistić O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Küfner I, Ottmann C, Oecking C, Nūrnberger T (2009) Cytolytic toxins as triggers of plant immune response. Plant Signal Behav 10:977–979

    Article  Google Scholar 

  • Kuhlbrandt W (2004) Biology, structure, and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  PubMed  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kurusu T, Saito K, Horikoshi S, Hanamata S, Negi J, Yagi C, Kitahata N, Iba K, Kuchitsu K (2013) An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells. PLoS ONE 8(8):e70623. doi:10.1371/journal pone.0070623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kurzawiήska H, Mazur S (2009) The evaluation of Pythium oligandrum and chitosan in control of Phytophthora infestans (Mont.) de Bary on potato plants. Folia Hortic 21(2):13–23

    Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol 189:8059–8072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwaaitaal M, Maintz J, Cavdar M, Panstruga R (2012) On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca2+ influx. Plant Signal Behav 7:1373–1377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwon C, Yun HS (2014) Plant exocytic secretion of toxic compounds for defense. Toxical Res 30:77–81

    Article  CAS  Google Scholar 

  • Lafontaine PJ, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. lycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laquitaine L, Gomès E, Francois J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Thévenot P (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: Induction of type 1 LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol Plant-Microbe Interact 19:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6:581–588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leba L-J, Cheval C, Ortiz-Martin I, Ranty B, Beuzόn CR, Galaud J-P, Aldon D (2012) CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. Plant J 71:976–989

    Article  PubMed  CAS  Google Scholar 

  • Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F (2008) The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in Bright Yellow-2 tobacco cells. Plant Physiol 146:1255–1266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lebrun-Garcia A, Ouaked F, Chiltz A, Pugin A (1998) Activation of MAPK homologues by elicitors in tobacco cells. Plant J 15:773–781

    Article  PubMed  CAS  Google Scholar 

  • Lebrun-Garcia A, Chiltz A, Gout E, Bligny R, Pugin A (2002) Questioning the role of salicylic acid and cytosolic acidification in mitogen activated protein kinase (MAPK) activation induced by cryptogein in tobacco cells. Planta 214:792–797

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux-Ouaked D, Pugin A, Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant-Microbe Interact 13:821–829

    Google Scholar 

  • Lee J, Klessig DF, Nurnberger T (2001a) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079–1093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Nöller J, Weiler EW, Cornelis GR, Mansfield JW, Nürnberger T (2001b) HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A 98:289–294

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee S-W, Han S-W, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci U S A 103:18395–18400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee SW, Han S, Sririyanum M, Park C, Seo Y, Ronald PC (2009) A type 1-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  PubMed  CAS  Google Scholar 

  • Lehtonen NT, Akita M, Frank W, Reski R, Valkonen JPT (2012) Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor. Mol Plant Microbe Interact 25:363–371

    Article  PubMed  CAS  Google Scholar 

  • Leon-kloosterziel KM, Verhagen BWM, Keurentjes JJB, VanPelt JA, Rep M, VanLoon LC, Pieterse CMJ (2005) Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle. Plant Mol Biol 57:731–748

    Article  PubMed  CAS  Google Scholar 

  • Lherminier J, Benhamou N, Larrue, Milat ML, Boudon-Padieu E, Nicole M, Blein J-P (2003) Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93:1308–1319

    Google Scholar 

  • Lherminier J, Elmayan T, Fromentin J, Elaraqui KT, Vesa S, Morel J, Verrier J-L, Cailleteau B, Blein J-P, Simon-plas F (2009) NADPH oxidase-mediated reactive oxygen species production; subcellular localization and reassessment of its role in plant defense. Mol Plant Microbe Interact 22:868–881

    Article  PubMed  CAS  Google Scholar 

  • Li R, Fan Y (1999) Reduction of lesion growth rate of late blight plant disease in transgenic potato expressing harpin protein. Sci China (Ser.C) 40:96–101

    Google Scholar 

  • Li J, Brader G, Palva ET (2004a) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li P, Lu X, Shao M, Long J, Wang J (2004b) Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci China C Life Sci 47:461–469

    Article  PubMed  CAS  Google Scholar 

  • Li M, Shao M, Lu X-Z, Wang J-S (2005a) Biological activities of purified harpinXoo and harpinXoo detection in transgenic plants using its polyclonal antibody. Acta Biochim Biophys Sinica 37:713–718

    Article  CAS  Google Scholar 

  • Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X, Zhou JM (2005b) Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci U S A 102:12990–12995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  PubMed  CAS  Google Scholar 

  • Li Y-C, Sun X-J, Bi Y, Ge Y-H, Wang Y (2009) Antifungal activity of chitosan on Fusarium sulphureum in relation to dry rot of potato tuber. Agr Sci China 8:597–604

    Article  CAS  Google Scholar 

  • Li JG, Liu HX, Cao J, Chen LF, Gu C, Allen C, Guo JH (2010) PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol Plant Pathol 11:371–381

    Article  PubMed  CAS  Google Scholar 

  • Li JG, Cao J, Sun FF, Niu DD, Yan F, Liu HX, Guo JH (2011) Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions. Phytopathology 101:1202–1208

    Article  PubMed  CAS  Google Scholar 

  • Li W, Shao M, Zhong W, Yang J, Okada K, Yamane H, Zhang L, Wang G, Wang D, Xiao S, Chang S, Qian G, Liu F (2012) Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. PLoS ONE 7(9):e43914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li X, Han B, Xu M, Han L, Zhao Y, Liu Z, Dong H, Zhang C (2014a) Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1. Planta 239:831–846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li X, Han B, Zhao Y, You Z, Dong H, Zhang C (2014b) Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J Biosci 39:127–137

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer EL, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant-Microbe Interact 20:420–429

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Jin H, Yang K, Kim C, Baker B, Zhang S (2003) Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J 34:149–160

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, Dong H (2006) The internal glycine-rich motif and cysteine suppress several effects of HpaGXooc in plants. Phytopathology 96:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Tian S, Meng X, Yu Y (2007) Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol Technol 44:300–306

    Article  CAS  Google Scholar 

  • Liu P-P, von Dahl CC, Klessig DF (2011a) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011b) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lizasa E, Mitsutomi M, Nagano Y (2010) Direct binding of a plant LysM receptor-like kinase LysM RLK1/CERK1 to chitin in vitro. J Biol Chem 285:2996–3004

    Article  CAS  Google Scholar 

  • Lloyd SR, Schoonbeek H, Trick M, Zipfel C, Ridout CJ (2014) Methods to study PAMP-triggered immunity in Brassica species. Mol Plant Microbe Interact 27:286–295

    Article  PubMed  CAS  Google Scholar 

  • Lochman J, Mikes V (2006) Ergosterol treatment leads to the expression of a specific set of defence-related genes in tobacco. Plant Mol Biol 62:43–51

    Article  PubMed  CAS  Google Scholar 

  • Lovato FA, Inoue-Nagata AK, Nagata T, de Avila AC, Pereira LAR, Resende RO (2008) The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 137:245–252

    Article  PubMed  CAS  Google Scholar 

  • Love AJ, Yun B-W, Laval V, Loake GJ, Milner JL (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139:935–948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lumsden RD, Walter JF, Baker CP (1996) Development of Gliocladium virens for damping-off disease control. Can J Plant Pathol 18:463–468

    Article  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2011) Next generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma Y, Walker RK, Zhao Y, Berkowitz GA (2012) Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proc Nat Acad Sci USA 109:195852–19857

    Google Scholar 

  • Ma Y, Han C, Chen J, Li H, He K, Liu A, Li D (2015) Fungal cellulose is an elicitor but its enzymatic activity is not required for its elicitor activity. Mol Plant Pathol 16:14–26. doi:10.1111/mpp.12156

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Ichida AM, Sanders D, Schroeder JI (1997) Roles of higher K+ channels. Plant Physiol 114:1141–1149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signalling. Mol Cell 54:263–272

    Article  PubMed  CAS  Google Scholar 

  • Madsen AM, de Neergaard E (1999) Interaction between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum. Eur J Plant Pathol 105:761–768

    Article  Google Scholar 

  • Maghuly F, Borroto-Fernandez EG, Khan MA, Herndl A, Marzban G, Laimer M (2009) Expression of calmodulin and lipid transfer protein genes in Prunus incisa × serrula under different stress conditions. Tree Physiol 29:437–444

    Article  PubMed  CAS  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats GT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178. doi:10.3369/fpls.2014.00178

    Article  PubMed Central  PubMed  Google Scholar 

  • Malnoy M, Venisse JS, Chevreau E (2005) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49

    Article  Google Scholar 

  • Mandal S, Mitra A (2007) Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol 71:201–209

    Article  CAS  Google Scholar 

  • Marten H, Konrad KR, Dietrich P, Roelfsema RG, Hedrich R (2007) Ca2+-dependent and –independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum. Plant Physiol 143:28–37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Masunaka A, Sekiguchi H, Takahashi H, Takenaka S (2010) Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum. J Phytopathol 158:417–426

    Article  CAS  Google Scholar 

  • Mateo A, Muhlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsumoto K, Sawada H, Matsumoto K, Hamada H, Yoshimoto E, Ito T, Takeuchi S, Tsuda S, Suzuki K, Kobayashi K, Kiba A, Okuno T, Hikichi Y (2008) The coat protein gene of tobamovirus P0 pathotype is a determinant for activation of temperature-insensitive L 1a-gene-mediated resistance in Capsicum plants. Arch Virol 155:645–650

    Article  CAS  Google Scholar 

  • Mattinen L, Tshulkina M, Mae A, Pihonen M (2004) Identification and characterization of Nip necrosis-inducing virulence protein of Erwinia carotovora subsp carotovora. Mol Plant-Microbe Interact 17:1366–1375

    Article  PubMed  CAS  Google Scholar 

  • Meindl T, Boller T, Felix G (2000) The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12:1783–1794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miao W, Wang J (2013) Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers defense response against Verticillium dahliae Kieb. Methods Mol Biol 958:223–246

    Article  PubMed  CAS  Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010a) Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miao W, Wang X, Song C, Wang Y, Ren Y, Wang J (2010b) Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance. J Expt Bot 61:4263–4275

    Article  CAS  Google Scholar 

  • Mikes V, Milat ML, Ponchet M, Panabieres F, Ricci P, Blein JP (1998) Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem Biophys Res Commun 245:133–139

    Article  PubMed  CAS  Google Scholar 

  • Milat ML, Ricci P, Blein JP (1991) Capsidiol and ethylene production by tobacco cells in response to cryptogein, an elicitor from Phytophthora cryptogea. Phytochemistry 30:2171–2173

    Article  CAS  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513

    Article  PubMed  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1 a LysM receptor kinase is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mohamed N, Lherminier J, Farmer M-J, Fromentin J, Béno V, Houot M-L, Milat M-L, Blein J-P (2007) Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology 97:611–620

    Article  PubMed  CAS  Google Scholar 

  • Molinaro A, Newman M-A, Lanzetta R, Parrilli M (2009) The structures of lipopolysaccharides from plant-associated gram-negative bacteria. Eur J Org Chem 34:5887–5896

    Article  CAS  Google Scholar 

  • Molloy C, Cheah L-H, Koolaard JP (2004) Induced resistance against Sclerotinia sclerotiorum in carrots treated with enzymatically hydrolysed chitosan. Postharvest Biol Technol 33:61–65

    Article  CAS  Google Scholar 

  • Moret A, Muñoz Z, Garcẻs S (2009) Control of powdery mildew on cucumber cotyledons by chitosan. J Plant Pathol:91. doi 10.4454/pp.v-9112.967

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Motteram J, Kūfner I, Deller S, Brunner F, Hammond-Kosack KE, Nurnberger T, Rudd JJ (2009) Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. Mol Plant-Microbe Interact 22:790–799

    Article  PubMed  CAS  Google Scholar 

  • Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi TT, Ichinose Y (2008) Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant-Microbe Interact 21:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K (2008) RACK1 functions in rice immunity by interacting with the Rac1 immune complex. Plant Cell 20:2265–2279

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Návarová H, Bernsdorff F, Döring A-C, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of MATE transporter family. Plant Cell 14:275–286

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Expt Bot 59:25–35

    Article  CAS  Google Scholar 

  • Newman M-A, Dow JM, Molinaro A, Parrilli M (2007) Priming, induction and modulation of plant defense responses by bacterial lipopysaccharides. Plant Immun 13:69–84

    Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: Pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Noirot E, Der C, Lherminier J, Robert F, Moricova P. Kiêu K, Leborgne-Castel N, Simon-Plas F, Bouhidel K (2014) Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. J Exp Bot 65:5011–5022

    Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460

    Article  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, Guven K, Iriarte FB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    Article  CAS  Google Scholar 

  • Oh CS, Beer SV (2007) AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol 145:426–436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orlandi WE, Hutcheson SW, Baker CJ (1992) Early physiological responses associated with race-specific recognition in soybean leaf tissue and cell suspensions treated with Pseudomonas syringae pv. glycinea. Physiol Mol Plant Pathol 40:173–180

    Article  CAS  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence – a soap story. Trends Plant Sci 1:4–9

    Article  Google Scholar 

  • Ottmann C, Luberacki B, Kūfner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Ulrich Seitz H, Nurnberger T, Oecking C (2009) A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 106:10359–10364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Padgett HS, Watanabe Y, Beachey RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant-Microbe Interact 10:709–715

    Article  CAS  Google Scholar 

  • Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–180

    Article  PubMed  CAS  Google Scholar 

  • Panabières F, Marais A, Le Berre J-Y, Penot I, Fournier D, Ricci P (1995) Characterization of a gene cluster of Phytophthora cryptogea which codes for elicitins, proteins inducing a hypersensitive-like response in tobacco. Mol Plant-Microbe Interact 8:996–1003

    Article  PubMed  Google Scholar 

  • Pandey A-K, Huang GM-J, H-E YM-K, Zeng J, Feng T-Y (2005) Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent cell death in response to Erwinia carotovora. Plant Mol Biol 59:771–780

    Article  PubMed  CAS  Google Scholar 

  • Papadoulou K, Melton RE, Leggertt M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci U S A 96:12923–12928

    Article  Google Scholar 

  • Parchmann S, Gundlach H, Mueller MJ (1997) Induction of 12-oxo-phytodienoic acid in wounded plants and elicited plant cell cultures. Plant Physiol 115:1057–1064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y (2000) Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 124:725–732

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park C-J, Bart R, Chern M, Canlas PE, Bai W, Ronald PC (2010a) Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS ONE 5(2):e9262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park C-J, Han S-W, Chen X, Ronald PC (2010b) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN (2011) The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS ONE 6:e17306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pavli OI, Tampakaki AP, Skaracis GN (2012) High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS ONE 7(12):e51414

    Google Scholar 

  • Pearce RB, Ride JP (1982) Chitin and related compounds as elicitors of lignification response in wounded wheat leaves. Physiol Plant Pathol 20:119–123

    Article  CAS  Google Scholar 

  • Pei Z-M, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Pemberton CL, Whitehead NA, Sebaihia M, Bell KS, Hyman IJ, Harris SJ, Matlin AJ, Robson ND, Birch PRJ, Carr JP, Toth IK, Salmond GP (2005) Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: Identification of a fungal elicitor homologue in a soft-rotting bacterium. Mol Plant-Microbe Interact 18:343–353

    Article  PubMed  CAS  Google Scholar 

  • Peng J-L, Dong H-S, Dong H-P, Delaney TP, Bonasera BM, Beer SV (2003) Harpin-elicited hypersensitive cell death, and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol 62:317–326

    Article  CAS  Google Scholar 

  • Peng J-L, Bao Z, Ren H, Wang J, Dong H (2004a) HarpinXoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sin 46:1083–1090

    CAS  Google Scholar 

  • Peng J-L, Bao Z-L, Ren H-Y, Wang J-S, Dong HS (2004b) Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Riviére N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant-Microbe Interact 23:846–860

    Article  PubMed  CAS  Google Scholar 

  • Pertot I, Fiamingo F, Amsalem L, Maymom M, Freeman S, Gobbin D, Elad Y (2007) Sensitivity of two Podosphaera aphanis populations to disease control agents. J Plant Pathol 89:85–96

    CAS  Google Scholar 

  • Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The Lysin motif receptor-like kinase (LysM-RLK) is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR, Allen C, Bent AF (2004) Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Mol Plant-Microbe Interact 17:696–706

    Article  PubMed  CAS  Google Scholar 

  • Picard K, Ponchet M, Blein J-P, Rey P, Tirillt Y, Benhamou N (2000) Oligandrin, a proteinaceous molecule produced by the mycoparasite, Pythium oligandrum, induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol 124:379–395

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pike SM, Adam AL, Pu X-A, Hoyos ME, Laby R, Beer SV, Novacky A (1998) Effects of Erwinia amylovora harpin on tobacco leaf cell membranes are related to leaf necrosis and electrolyte leakage and distinct from perturbations caused by E. amylovora. Physiol Mol Plant Pathol 53:39–60

    Article  CAS  Google Scholar 

  • Planchet E, Gupta KJ, Sonoda M, Zeier J, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    Article  PubMed  CAS  Google Scholar 

  • Planchet E, Sonoda M, Zeier J, Kaiser WM (2006) Nitric oxide (NO) as an intermediate in cryptogein-induced hypersensitive response: a critical evaluation. Plant Cell Environ 29:59–69

    Article  PubMed  CAS  Google Scholar 

  • Ponchet M, Panabieres F, Milat ML, Mikes V, Montillet JL, Suty L, Triantaphylides C, Tirilly Y, Blein JP (1999) Are elicitins cryptograms in plant-oomycete communications? Cell Mol Life Sci 56:1020–1047

    Article  PubMed  CAS  Google Scholar 

  • Po-Wen C, Singh P, Zimmerli L (2013) Priming of the Arabidopsis pattern-triggered immunity response upon infection by nerotrophic Pectobacterium carotovorum bacteria. Mol Plant Pathol 14:58–70

    Article  PubMed  CAS  Google Scholar 

  • Prapagdee B, Kotchadat K, Kumsopa A, Visarathnonth N (2007) The role of chitosan in protection of soybean from sudden death syndrome caused by Fusarium solani f. sp. glycines. Bioresour Technol 98:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Proietti S, Giangrande C, Amoresano A, Pucci P, Molarinaro A, Bertini L, Caporale C, Caruso C (2014) Xanthomonas campestris lipopolysaccharides trigger innate immunity and oxidative burst in Arabidopsis. Plant Physiol Biochem 85C:51–62

    Google Scholar 

  • Pugin A, Frachisse J-M, Tavernier E, Bligny R, Gout E, Douce R, Guern J (1997) Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9:2077–2091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qiu D, Clayton K, Wei Z-M (2001) Bioassay development for Messenger® activity. Phytopathology 91:S74

    Google Scholar 

  • Qiu D, Mao J, Yang X, Zeng H (2009) Expression of elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep 28:925–933

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3. doi:10.1186/1471-2229-7-3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Quang Z, Li X, Huang L, Hong Y, Zhang Y, Zhang H, Li D, Song F (2015) Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato. Mol Plant Pathol 16:238–250. doi:10.1111/mpp.12176

    Google Scholar 

  • Qutob D, Kamoun S, Gijzen M (2002) Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32:361–373

    Article  PubMed  CAS  Google Scholar 

  • Qutob D, Huitema E, Gijzen M, Kamoun S (2003) Variation in structure and activity among elicitins from Phytophthora sojae. Mol Plant Pathol 4:119–124

    Article  PubMed  CAS  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by NEP1-like proteins. Plant Cell 18:3721–3744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raacke IC, von Rad U, Mueller MJ, Berger S (2006) Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as-independent mechanisms, Mol Plant Microbe Interact 19:1138–1146

    Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Google Scholar 

  • Rahman MA, Mahmud TMM, Kadir J, Rahman RA, Begum MM (2009) Enhancing the efficacy of Burkholderia cepacia B23 with calcium chloride and chitosan to control anthracnose of papaya during storage. Plant Pathol J 25:361–368

    Article  CAS  Google Scholar 

  • Rakwal R, Tamogani S, Agrawal GK, Iwahashi H (2002) Octadecanoid signaling component ‘burst’ in rice (Oryza sativa L.) seedlings leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Rappussi MCC, Pascholati SF, Benato EA, Cia P (2009) Chitosan reduces infection by Guignardia citricarpa in postharvest ‘Valencia’ oranges. Brazilian Arch Biol Technol 52:513–521

    Article  CAS  Google Scholar 

  • Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona J-P, Barny M-A, Bouteau F (2007) The HrpNea harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant-Microbe Interact 20:94–100

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  PubMed  CAS  Google Scholar 

  • Reddy MV, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47:1208–1216

    Article  CAS  Google Scholar 

  • Reddy MVB, Angers P, Castaigne F, Arul J (2000) Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes. J Am Soc Hortic Sci 125:742–747

    CAS  Google Scholar 

  • Reglinski T, Newton AC, Lyon GD (1994a) Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. J Plant Dis Prot 101:1–10

    CAS  Google Scholar 

  • Reglinski T, Newton AC, Lyon GD (1994b) Induction of resistance mechanisms in barley by yeast-derived elicitors. Ann Appl Biol 124:509–517

    Article  Google Scholar 

  • Rekanovic E, Milijasevic S, Todorovic B, Potocnik I (2007) Possibilities of biological and chemical control of Verticillium wilt in pepper. Phytoparasitica 35:436–441

    Article  CAS  Google Scholar 

  • Ren H, Gu G, Long J, Yin Q, Wu T, Song T, Zhang S, Chen Z, Dong H (2006a) Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. J BioSci 31:617–627

    Article  PubMed  CAS  Google Scholar 

  • Ren H, Song T, Wu T, Sun L, Liu Y, Yang F, Chen Z, Dong H (2006b) Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-III effector. Ann Microbiol 56:281–287

    Article  CAS  Google Scholar 

  • Ricci P, Bonnet P, Huet JC, Sallantin M, BeauvaisCante F, Bruneteau M, Billard V, Michel G, Pernollet JC (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183(555):563

    Google Scholar 

  • Rizo J, Südhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu SH, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Bẻlanger C (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  PubMed  CAS  Google Scholar 

  • Romanazzi G, Nigro F, Ippolito AD, Venere D, Salerno M (2002) Effects of pre- and post-harvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67:1862–1867

    Article  CAS  Google Scholar 

  • Romanazzi G, Mlikota Gabler T, Smilanick JL (2006) Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Dis 90:445–450

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Laxa M, Matté A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M, Vandelle E, Dietz K-J, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Campostrini NN, Matté A, Righetti PG, Perazzolli M, Zolla L, Roepstorff P, Delledonne M (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    Article  PubMed  CAS  Google Scholar 

  • Rosli HG, Zheng Y, Pombo MA, Zhong S, Bombarely A, Fei Z, Collmer A, Martin GB (2013) Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biol 14:R139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rossard S, Luini E, Pérault JM, Bonmort J, Roblin G (2006) Early changes in membrane permeability, production of oxidative burst and modification of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. J Exp Bot 57:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Rossard S, Roblin G, Atanassova R (2010) Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. J Exp Bot 61:1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Rustérucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    Article  PubMed Central  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K (2006) Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol 47:689–697

    Article  PubMed  CAS  Google Scholar 

  • Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault J-H, Clẻment C, Baillieul F, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol 160:1530–1641

    Article  CAS  Google Scholar 

  • Sanchez L, Mazeyrat-Gourbeyre F, Clèment C, Baillieul F, Dorey S (2013) Rhamnolipids elicit plant defence responses and enhance resistance against Botrytis cinerea. Acta Hortic (ISHS) 1009:105–109

    Article  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the cross-roads of signalling. Plant Cell 14:S401–S417

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sang S, Li X, Gao R, You Z, Lü B, Liu P, Ma Q, Dong H (2012) Apoplastic and cytoplasmic location of harpin protein Hpa1Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol Biol 79:375–391

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Naito K, Suenaga H, Ikeda T, Toyoda K, Inagaki Y, Shiraishi T, Ichinose Y (2007) Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq J Seq Map 18:152–159

    Google Scholar 

  • Sathiyabama M, Akila G, Einstein Charles R (2014) Chitosan-induced defense responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch Phytopathol Plant Protect 47:1963–1973

    Article  CAS  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt C, Schelle I, Liao YJ, Schroeder JI (1995) Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA 92:9535–9539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schopfer FJ, Baker PR, Freeman BA (2002) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654

    Article  CAS  Google Scholar 

  • Schouten A, van Baarlen P, van Kan JAL (2008) Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associated with membranes and the nucleus of plant cells. New Phytol 177:493–505

    PubMed  CAS  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14:54–61

    Article  PubMed  CAS  Google Scholar 

  • Séjalon N, Villaba F, Bottin A, Rickauer M, Dargent R, Esquerré-Tugayé MT (1995) Characterization of a cell surface antigen isolated from the plant pathogen Phytophthora parasitica var nicotianae. Can J Bot 73:1104–1108

    Article  Google Scholar 

  • Sèjalon-Delmas N, Mateos FV, Bottin A, Rickauer M, Dargent R, Esquerrè-Tugayè MT (1997) Purification, elicitor activity, and cell wall localization of a glycoprotein from Phytophthora parasitica var nicotianae, a fungal pathogen of tobacco. Phytopathology 87:899–909

    Article  PubMed  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Kanehara K, Torres M, Yamada K, Tintor N, Kombrink E, Schulze-Lefert P, Saijo Y (2012) Repression of sucrose/ultraviolet B light-induced flavonoid accumulation in microbe-associated molecular pattern-triggered immunity in Arabidopsis. Plant Physiol 158:408–422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:Article 30. doi:10.3389/fpls.2013.00030

  • Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J 6:73–81

    PubMed  CAS  Google Scholar 

  • Sharathchandra RG, Niranjan Raj S, Shetty NP, Amruthesh KN, Shekar Shetty H (2004) A chitosan formulation Elexa induces downy mildew disease resistance and growth promotion in pearl millet. Crop Protect 23:881–888

    Article  CAS  Google Scholar 

  • Sharp JK, McNeil M, Albersheim P (1984) The primary structures of one elicitor active and seven elicitor inactive hexa-β-glucopyranosyl-D-glucitol isolated from the mycelial cell walls of Phytophthora megasperma f sp glycinea. J Biol Chem 259:11321–11336

    PubMed  CAS  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science 315:1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishi-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs JM, Lanzetta R, Newman M-A, Parrilli M (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem 280:33660–33668

    Article  PubMed  CAS  Google Scholar 

  • Silipo A, Sturiale L, Garozzo D, Erbs G, Tandrup Poulsen T, Lanzetta R, Dow JM, Parrilli M, Newman M-A, Molinaro A (2008) The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chem BioChem 9:896–904

    CAS  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli MT, Lanzetta Shibuya N, Newman M-A, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20:406–419

    Article  PubMed  CAS  Google Scholar 

  • Simon-Plas F, Rusterucci C, Milat ML, Humbert C, Montillet JL, Blein JP (1997) Active oxygen species production in tobacco cells elicited by cryptogein. Plant Cell Environ 20:1573–1579

    Article  CAS  Google Scholar 

  • Simon-Plas F, Elmayan T, Blein J-P (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31:137–148

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Soberon-Chavez G, Lẻpine F, Dẻziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  PubMed  CAS  Google Scholar 

  • Sohn SI, Kim YH, Kim BR, Lee SY, Lim CK, Hur JH, Lee JY (2007) Transgenic tobacco expressing the hrpN EP gene from Erwinia pyrifoliae triggers defense responses against Botrytis cinerea. Mol Cells 24:232–239

    PubMed  CAS  Google Scholar 

  • Son GH, Wan J, Kim HJ, Nguyen XC, Chung W-S, Hong JC, Stacey G (2012) Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant Microbe Interact 25:48–60

    Article  PubMed  CAS  Google Scholar 

  • Song JT, Lu H, McDowell JM, Greenberg JT (2004) A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J 40:200–212

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  PubMed  CAS  Google Scholar 

  • Staats M, Van Baarlen P, Schouten A, Van Kan JAL (2007) Functional analysis of NLP genes from Botrytis elliptica. Mol Plant Pathol 8:209–214

    Article  PubMed  CAS  Google Scholar 

  • Strobel NE, Ji C, Gopalan S, Kuc JA, He SY (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv syringae 61 HrpZPss protein. Plant J 9:431–439

    Article  CAS  Google Scholar 

  • Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su S-H, Jester PJ, Zhang S, Bent AF, Krysan PJ (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suh SJ, Wang Y-F, Frelet A, Leonhardt A, Klein M, Forestier C, Mueller-Roeber B, Cho MH, Martinoia E, Schroeder JI (2007) The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282:1916–1924

    Article  PubMed  CAS  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Nat Acad Sci USA 99:13307–13312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF (2006) Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18:764–779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun J-Y, Gaudet DA, Lu Z-X, Frick M, Puchalski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant-Microbe Interact 21:346–360

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J (2013) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–628

    Article  PubMed  CAS  Google Scholar 

  • Suty L, Blein JP, Ricci P, Pugin A (1995) Early changes in gene expression in tobacco cells elicited with cryptogein. Mol Plant-Microbe Interact 8:644–651

    Article  CAS  Google Scholar 

  • Suzuki H, Reddy MSS, Naoumkina M, Aziz N, May GC, Huhman DV, Summer LW, Blount JW, Mendes P, Dixon RA (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220:696–707

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003a) Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44:342–349

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Nakagima R, Toyoda K, Shiraishi T, Ichinose Y (2003b) Differential effects of flagellins from Pseudomonas syringae pv tabaci, tomato, and glycinea on plant defense response. Plant Physiol Biochem 41:165–174

    Article  CAS  Google Scholar 

  • Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv tabaci. Cell Microbiol 8:923–938

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Nasir KHB, Ito A, Kanzaki H, Matsumura H, Saitoh H, Fujisawa S, Kamoun S, Terauchi R (2007a) A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant J 49:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007b) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che F-S (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact 21:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Takakura Y, Ishida Y, Inoue Y, Tsutsumi F, Kuwata S (2004) Induction of hypersensitine response-like reaction by powdery mildew in transgenic tobacco expressing harpin pss. Physiol Mol Plant Pathol 64:83–89

    Article  CAS  Google Scholar 

  • Takakura Y, Che F-S, Ishida Y, Tsutsumi F, Kuotani K-I, Usami S, Isogai A, Imaseki H (2008) Expression of a bacterial flagellin gene triggers plant immune responses and confers disease resistance in transgenic rice plants. Mol Plant Pathol 9:525–529

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji H (2014) Development of disease-resistant rice using regulatory components of induced disease resistance. Front Plant Sci 5:Art 630. doi:10.3389/fpls.2014.00630

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Hardham AR, Jones DA (2005) Differences in cell death induction by Phytophthora elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus. Plant Physiol 138:1491–1504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takenaka S, Nakamura Y, Kono T, Sekiguchi H, Masunaka A, Takahashi H (2006) Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Mol Plant Pathol 7:325–339

    Article  PubMed  CAS  Google Scholar 

  • Takenaka S, Tamagake H (2009) Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot. J Gen Plant Pathol 75:340–348

    Article  Google Scholar 

  • Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Flagellin glycosylation island in Pseudomonas syringae pv glycinea and its role in host specificity. J Bacteriol 185:6658–6665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takeuchi K, Ono H, Yoshida M, Ishi T, Katch E, Taguchi F, Miki R, Murata K, Kaku H, Ichinose Y (2007) Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in D and L configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. J Bacteriol 189:6945–6956

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takezawa D (2000) A rapid induction by elicitors of the mRNA encoding CCD-1, a 14 kDa Ca2+-binding protein in wheat cultured cells. Plant Mol Biol 42:807–817

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJ, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signaling? Trend Plant Sci 8:286–293

    Article  CAS  Google Scholar 

  • Tampakaki AP, Panopoulos NJ (2000) Elicitation of hypersensitive cell death by extracellularly targeted HrpZPph produced in planta. Mol Plant-Microbe Interact 13:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M, Panapoulos NJ (2010) Playing the “Harp” Evolution of our understanding of hrp/hrc genes. Annu Rev Phytopathol 48:347–370

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Che F-S, Watanabe N, Fujiwara S, Takayama S, Isogai A (2003) Flagellin from an incompatible strain of Acidovorax avenae mediates H2O2 generation accompanying hypersensitive cell death and expression of PAL Cht-1 and PBZ1 but not of LOX in rice. Mol Plant-Microbe Interact 16:422–428

    Article  PubMed  CAS  Google Scholar 

  • Tavernier E, Wendehenne D, Blein J-P, Pugin A (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of a hypersensitive reaction in tobacco cells. Plant Physiol 109:1025–1031

    PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor KC (2006) Harpin protein application impacts fruit yield, size and retention of peach fruit. Acta Hortic (ISHS) 713:237–242

    Article  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7 46:34–53

    Google Scholar 

  • Thipyapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12:1569–1595

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thuerig B, Felix G, Binder A, Boller T, Tamm L (2006) An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signaling pathways. Physiol Mol Plant Pathol 67:180–193

    Article  Google Scholar 

  • Thuleau P, Ward JM, Ranjeva R, Schroeder JI (1994) Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J 13:2970–2975

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tosun N (2007) Disease control with ISR2000TM (elicitor) in conjunction with fungicides. http://www.engormix.com/diseasecontrol/eart 658

  • Tosun N, Karabay NU, Turkusay H, Aki C, Turkan I, Schading RL, Onsekiz C (2003) The effect of harpinEa as plant activator in control of bacterial and fungal diseases of tomato. Acta Hortic 613:251–254

    Article  CAS  Google Scholar 

  • Trdă L, Fernandez O, Boutrot F, Hẻloir MC, Kelloniemi J, Daire X, Adrian M, Clẻment C, Zipfel C, Dorey S, Poinssot B (2014) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Trouvelot S, Hẻloir M-C, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci 5:article 592, p14. doi:10.3389/fpls.2014.00592

  • Tsuda K, Katagiri P (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  PubMed  CAS  Google Scholar 

  • Tsunemi K, Taguchi F, Marutani M, Watanabe-Sugimoto M, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2011) Degeneration of hrpZ gene in Pseudomonas syringae pv. tabaci to evade tobacco defence: an arms race between tobacco and its bacterial pathogens. Mol Plant Pathol 12:709–714

    Article  PubMed  CAS  Google Scholar 

  • Tubajika KM, Civerolo EL, Luvisis DA, Hashim JM (2007) The effects of kaolin, harpin, and imidacloprid on development of Pierce’s disease in grape. Crop Protect 26:92–99

    Article  CAS  Google Scholar 

  • Türküsay H, Tosun N, Yildiz S, Saygili H (2009) Effects of plant activators on physiological and morphological parameters of processing tomato. Acta Hortic (ISHS) 808:431–436

    Article  Google Scholar 

  • Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M, Koga J (2000) Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol 41:676–683

    Article  PubMed  CAS  Google Scholar 

  • Umemura K, Ogawa N, Koga J, Iwata M, Usami H (2002) Elicitor activity of cerebroside, a sphingolipid elicitor, in cell suspension cultures of rice. Plant Cell Physiol 43:778–784

    Article  PubMed  CAS  Google Scholar 

  • Umemura K, Tanino S, Nagatsuka T, Koga J, Iwata M, Nagashima K, Amemiya Y (2004) Cerebroside elicitor confers resistance to Fusarium disease in various plant species. Phytopathology 94:813–818

    Article  PubMed  CAS  Google Scholar 

  • Ustun N, Ulutas E, Yasarakinci N, Kilic T (2009) Efficacy of some plant activators on bacterial canker of tomato in Aegean region of Turkey. Acta Hortic (ISHS) 808:405–408

    Article  Google Scholar 

  • Uzal EN, Gómez Ros LV, Pomar F, Bernal MA, Paradela A, Albar JP, Barceló A (2009) The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol Plant 135:196–213

    Article  PubMed  CAS  Google Scholar 

  • Vallance J, Le Floch G, Dẻniel F, Barbier G, Levesque CA, Rey P (2009) Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl Environ Microbiol 75:4790–4800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact 21:1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  PubMed  CAS  Google Scholar 

  • Vargas WA, Djonovic S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815

    Article  PubMed  CAS  Google Scholar 

  • Varnier A-L, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault J-H, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:176–193

    Article  CAS  Google Scholar 

  • Vasil’ev LA, Dzyubinskaya EV, Zinovkin RA, Kiselevsky DB, Lobysheva NV, Samuilov VD (2009) Chitosan-induced programmed cell death in plants. Biochem Mosc 74:1035–1043

    Article  CAS  Google Scholar 

  • Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vatsa P, Chiltz A, Bourgue S, Wendehenne D, Garcia-Brugger A, Pugin A (2011) Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie 93:2095–2101

    Article  PubMed  CAS  Google Scholar 

  • Vauthrin S, Mikes V, Milat M-L, Ponchet M, Maume B, Osman H, Blein J-P (1999) Elicitins trap and transfer sterols from micelles, liposomes and plasma membranes. Biochim Biophys Acta 1419:335–342

    Article  PubMed  CAS  Google Scholar 

  • Veit S, Worle JM, Nürnberger T, Koch W, Seitz HU (2001) A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol 127:832–841

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Veluchamy S, Hind SR, Dunham DM, Martin GB, Panthee DR (2014) Natural variation for responsiveness to flg22, flgII-28, and CSP22 and Pseudomonas syringae pv. tomato in heirloom tomatoes. PLoS ONE 9(9):e105119

    Article  CAS  Google Scholar 

  • Viard MP, Martin F, Pugin A, Blein J-P (1994) Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol 104:1245–1249

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P (1997) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms. Marcel Dekker, New York, p 553

    Google Scholar 

  • Vidhyasekaran P (2004) Concise Encyclopedia of plant pathology. Haworth Press, Binghamton/New York, p 619

    Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, IIth edn. CRC Press/Taylor Francis Group, Boca Raton, p 510

    Google Scholar 

  • Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht, p 442

    Google Scholar 

  • Vidhyasekaran P (2015) Plant hormone signaling systems in plant innate immunity. Springer, Dordrecht, p 458

    Google Scholar 

  • Villalba Mateos F, Rickauer M, Esquerré-Tugayé MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant-Microbe Interact 10:1045–1053

    Article  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defense responses. Mol Plant Pathol 8:737–746

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Vranová E, Inzé D, Van Brueusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Google Scholar 

  • Walter MH, Grima-Pettenati J. Grand C, Lamb CJ (1988) Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor. Proc Natl Acad Sci USA 85:5546–5550

    Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Zhang X-C, Stacey G (2008) Chitin signaling and plant disease resistance. Plant Signal Behav 3:831–833

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, Jiang WH, Chen XY (2004) VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol 70:4989–4995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang W, Li S, Zhao X, Du Y, Lin B (2008) Oligochitosan induces cell death and hydrogen peroxide accumulation in tobacco suspension cells. Pesticide Biochem Physiol 90:106–113

    Article  CAS  Google Scholar 

  • Wang D, Wang Y, Fu M, Mu S, Han B, Ji H, Cai H, Dong H, Zhang C (2014) Transgenic expression of the functional fragment Hpa110–42 of the harpin protein Hpa1 imparts enhanced resistance to powdery mildew in wheat. Plant Dis 98:448–455

    Article  CAS  Google Scholar 

  • Ward JM, Pei Z-M, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wathugala DL, Hemsley PA, Moffat CS, Cremelie P, Knight MR, Knight H (2012) The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol 195:217–230

    Article  PubMed  CAS  Google Scholar 

  • Watt SA, Tellstrom V, Patschkowski T, Niehaus K (2006) Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of the oxidative burst reaction in tobacco cell suspension cultures. J Biotechnol 126:78–86

    Article  PubMed  CAS  Google Scholar 

  • Wei Z-M, Laby R-J, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    Article  PubMed  CAS  Google Scholar 

  • Wei Z-M, Qiu D, Kropp MJ, Schading RI (1998) Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathology (Suppl) 88:S96

    Google Scholar 

  • Wen W, Wang J (2001) Cloning and expressing a harpin gene from Xanthomonas oryzae pv oryzae. Acta Phytopathol Sin 31:296–300

    Google Scholar 

  • Wendehenne D, Binet M-N, Bleim J-P, Ricci P, Pugin A (1995) Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett 374:203–207

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Lamotte O, Frachisse J-M, Barbier-Brygoo H, Pugin A (2002) Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14:1937–1951

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171–189

    Article  PubMed  CAS  Google Scholar 

  • White PJ (2004) Calcium signals in root cells: the roles of plasma membrane calcium channels. Biologia 59(S13):77–83

    CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot (Lond) 92:487–511

    Article  CAS  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono JJ, Cullimore JV, Jehle AK, Göltz F, Kulik A, Molinaro A, Lipka V, Gust AA, Nürnberger T (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci U S A 108:19824–19829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu R, Gao T, Dong H (2007) Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J Biosci 32:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Desprès C (2012) The Arabidopsis NPR1 protein is a receptor to the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  PubMed  CAS  Google Scholar 

  • Wypijewski K, Hornyik C, Shaw JA, Stephens J, Goraczniak R, Gunderson SI, Lacomme C (2009) Ectopic 5′ splice sites inhibit gene expression by engaging RNA surveillance and silencing pathways in plants. Plant Physiol 151:955–965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Yang Y, Xie FJ, Liu Z, Qiu DW, Yang XF (2006) Effect of the activator protein from Magnaporthe grisea on plant growth and physiological activities. Acta Agriculturae Boreali-Sinica 21:1–5

    Google Scholar 

  • Xu G, Chen S, Chen F (2010) Transgenic chrysanthemum plants expressing a harpin X00 gene demonstrate induced resistance to alternaria leafspot and accelerated development. Russian J Plant Physiol 57:548–553

    Article  CAS  Google Scholar 

  • Yakushiji S, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2009) Bacterial DNA activates immunity in Arabidopsis thaliana. J Gen Plant Pathol 75:227–234

    Article  CAS  Google Scholar 

  • Yamaguchi T, Ito Y, Shibuya N (2000a) Oligosaccharide elicitors and their receptors for plant defense responses. Trends Glyosci Glyotechnol 12:113–120

    Article  CAS  Google Scholar 

  • Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N (2000b) Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12:817–826

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Maehara Y, Kodama O, Matsumura M, Shibuya N (2002) Two purified oligosaccharide elicitors, N-acetylchitoheptaose and tetraglucosyl glucitol, derived from Magnaporthe grisea cell walls, synergistically activate biosynthesis of phytoalexin in suspension-cultured rice cells. J Plant Physiol 159:1147–1149

    Article  CAS  Google Scholar 

  • Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol 47:728–735

    Article  CAS  Google Scholar 

  • Yang KY, Liu YD, Zhang SQ (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98:741–746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang B, Shiping T, Jie Z, Yonghong G (2005) Harpin induces local and systemic resistance against Trichothecium roseum in harvested Hami melons. Postharvest Biol & Technol 38:183–187

    Article  CAS  Google Scholar 

  • Yokosuka A, Mimaki Y (2009) Steroidal saponins from the whole plants of Agave utahensis and their cytotoxic activity. Phytochemistry 70:807–815

    Article  PubMed  CAS  Google Scholar 

  • Yoo S-D, Cho Y-H, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang H-G, Kachroo P, Masmoudi K, Berkowitz G, Klessig D-F (2006) The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen responses. Plant Cell 18:747–763

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu C, Chen H, Tian F, Leach JF, He C (2014) Differentially-expressed genes in rice infected by Xanthomonas oryzae pv. oryzae relative to a flagellin-deficient mutant reveal potential functions of flagellin in host-pathogen interactions. Rice 7:20

    Google Scholar 

  • Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 404–411

    Google Scholar 

  • Zamioudis C, Peterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  PubMed  CAS  Google Scholar 

  • Zander M, La Camera S, Lamotte O, Metraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61:200–210

    Article  PubMed  CAS  Google Scholar 

  • Zaninotto F, Camera SL, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeidler D, Dubery IA, Schmitt-Kopplin P, Von Rad U, Durner J (2010) Lipopolysaccharide mobility in leaf tissue of Arabidopsis thaliana. Mol Plant Pathol 11:747–755

    PubMed  CAS  Google Scholar 

  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23:339–347

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Fang Q, Zhang Z, Wang Y, Zheng X (2009) The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. J Expt Bot 60:3109–3122

    Article  CAS  Google Scholar 

  • Zhang L, Xiao S, Li W, Feng W, Li J, Wu Z, Gao X, Liu F, Shao M (2011) Overexpression of a harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62:4229–4238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y, Ba H, Zhou J, Zhang Y (2012) Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11:253–263

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y, Boutrot FFG, Tör M, Zipfel C, Gust AA, Brunner F (2013) Arabidopsis RECEPTOR-LIKE PROTEIN30 and receptor-like kinase SUPPRESSOR OF BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227–4241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang L, Kars I, Essenstam B, Liebrand TW, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JA (2014) Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:352–364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao XM, She XP, Yu W, Liang XM, Du YG (2007) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in resistance of tobacco to Tobacco mosaic virus. J Plant Pathol 89:55–65

    CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:596–605

    Article  CAS  Google Scholar 

  • Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant-Microbe Interact 13:191–202

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  PubMed  CAS  Google Scholar 

  • Zitter TA, Beer SV (1998) Harpin for insect control. Phytopathology 88:S104–S105

    Google Scholar 

  • Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P (2004) Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytol 161:557–568

    Article  CAS  Google Scholar 

  • Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P (2005) An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. Mol Plant-Microbe Interact 18:849–855

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vidhyasekaran, P. (2016). Switching on Plant Immune Signaling Systems Using Microbe-Associated Molecular Patterns. In: Switching on Plant Innate Immunity Signaling Systems. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-26118-8_3

Download citation

Publish with us

Policies and ethics