Skip to main content

Role of Plant Immune Signals and Signaling Systems in Plant Pathogenesis

  • Chapter
  • First Online:
Book cover Switching on Plant Innate Immunity Signaling Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 888 Accesses

Abstract

Plants possess innate immune system to resist pathogen attack. Innate immunity is the first line of defense against invading microorganisms. Pathogens possess pathogen-associated molecular patterns (PAMPs). The PAMPs are primary danger/alarm signal molecules to switch on the plant immune systems. PAMPs are evolutionarily conserved building blocks of microbial surfaces that directly bind to plant pattern recognition receptors (PRRs). Plants use the PRRs to defend themselves from microbial pathogens. The PRRs are localized at the plasma membrane and the PAMPs activate expression of the genes encoding various PRRs. When activated by the PAMP, the PRR is translocated to endocytic compartments and endocytosis of the PRR is important for activation of several downstream signaling events. The plant immune system uses several second messengers to encode information generated by the PAMPs and deliver the information downstream of PRRs to proteins which decode and interpret the signals and initiate defense gene expression. G-proteins act as molecular switches in signal transduction system. Calcium ion is an important intracellular second messenger and carries the PAMP signal downstream to initiate immune responses. Reactive oxygen species (ROS) serve as second messengers transmitting the message. ROS appears to interact with various defense signaling systems. It plays a central role in launching the defense response. Nitric oxide (NO) is a diffusible molecular messenger that plays an important role in plant immune response signal transduction. Mitogen-activated protein kinase (MAPK) cascades are major pathways downstream of PAMP/PRR signaling complex that transduce extracellular stimuli into intracellular responses in plants. The plant hormones salicylic acid (SA), jasmonates (JA), ethylene (ET), abscisic acid (ABA), auxin (AUX), cytokinin (CK), gibberellin (GA), and brassinosteroid (BR) play important role in intercellular and systemic signaling systems triggering expression of various defense-responsive genes. SA signaling is involved in triggering systemic acquired resistance (SAR). SAR is associated with priming of defense responses and the priming results in a faster and stronger induction of defense responses after pathogen attack. The priming can be inherited epigenetically and descendants of primed plants exhibit next-generation systemic acquired resistance. Thus when pathogens land on the plant surface, the PAMPs trigger highly complex defense responses against the pathogens and suppress disease development. However virulent pathogen may modify its PAMP structure during its pathogenesis to reduce its elicitor activity. Virulent pathogens may also contain inefficient PAMPs and trigger subdued defense responses favoring disease development. The reduced activity of PAMPs might facilitate the virulent pathogens to cause disease. Besides PAMP molecules, pathogens produce effectors, which play an important role in pathogenesis. Effectors specifically contribute to virulence of pathogens by targeting host plant innate immunity. The effectors secreted by various pathogens have been shown to suppress the PAMP-triggered immunity. Effectors disrupt binding of PAMP with PRR in the PAMP-PRR signaling complex. Effectors may promote ubiquitin-proteasome-mediated degradation of PRRs to impede PAMP-triggered plant immunity. Effectors have been shown to target the receptor kinase activity of the PRRs and inhibit the kinase activity to block PAMP-triggered immunity. Autophosphorylation of PRRs results in activation of PRRs and the effectors may inhibit the autophosphorylation of PRRs to suppress the PAMP-triggered immune system. Some effectors have been shown to block the action of the PRR signal amplifier BAK1. Several receptor-like cytoplasmic kinases (RLCK) including BIK1, PBS1, and PBS1-like (PBL) proteins play important role in regulation of the signaling pathways downstream of PAMP-PRR-BAK1 signaling complex and the effectors have been shown to block the action of these RLCKs. Effectors may also suppress the MAPK signaling cascade triggered by PAMPs. Effectors have been shown to suppress SA signaling system, which is involved in triggering defense responses against a broad range of plant pathogens. Pathogens may induce specific signaling systems, which may favor disease development. Pathogen hijacks ABA signaling system to suppress SA-mediated defense responses promoting disease development. JA signaling system has been reported to confer susceptibility against some pathogens and pathogens may hijack JA signaling system to cause disease. Necrotrophic pathogens use SA signaling pathway to promote disease development by suppressing JA signaling pathway. Auxin signaling system has been shown to be involved in promoting susceptibility to pathogens and inducing disease development. Pathogens hijack the host auxin metabolism leading to the accumulation of a conjugated form of the hormone, indole-3-acetic acid (IAA) – Asp, to promote disease development. Pathogens may hijack BR signaling machinery to interfere with effectual SA- and GA-controlled defenses. These studies suggest that various signals and signaling systems in plants modulate the pathogenesis inducing susceptibility and disease resistance and precise manipulation of these signaling systems will be an ideal tool to manage crop diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitch RB, Janjusevic R, Stebbins CE, Martin GB (2006) Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc Natl Acad Sci U S A 103:2851–2856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci U S A 104:2531–2536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Adie BA, Perez-Perez J, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Akagi A, Dandekar AM, Stotz HU (2011) Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. Phytopathology 101:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H (2012) XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana. Mol Plant-Microbe Interact 25:505–514

    Article  PubMed  CAS  Google Scholar 

  • Alamillo JM, Saénz P, Garcia JA (2006) Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. Plant J 48:217–227

    Article  PubMed  CAS  Google Scholar 

  • Alazem M, Lin K-Y, Lin N-S (2014) The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant Microbe Interact 27:177–189

    Article  PubMed  CAS  Google Scholar 

  • Al-Daoud F, Cameron RK (2011) ANAC055 and ANAC092 comtribute non-redundantly in an EIN2-dependent manner to age-related resistance in Arabidopsis. Physiol Mol Plant Pathol 76:212–222

    Article  CAS  Google Scholar 

  • Ali GS, Prasad KVSK, Day I, Reddy ASN (2007) Ligand-dependent reduction in the membrane mobility of FLAGELLIN SENSITIVE2, an Arabidopsis receptor-like kinase. Plant Cell Physiol 48:1601–1611

    Article  PubMed  CAS  Google Scholar 

  • Alkan N, Fluhr R, Prusky D (2012) Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. Mol Plant-Microbe Interact 25:85–96

    Article  PubMed  CAS  Google Scholar 

  • Altenbach DD, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant-Microbe Interact 20:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Amzalek E, Cohen Y (2007) Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology 97:179–186

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Uppalapati SR, Ryu C-M, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anfoka GH (2000) Benzo-(1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum Mill. cv. volledung) to cucumber mosaic virus. Crop Prot 19:401–405

    Article  CAS  Google Scholar 

  • Angra-Sharma R, Sharma DK (1999) Cytokinins in pathogenesis and disease resistance of Pyrenophora teres-barley and Drechslera maydis-maize interactions during early stages of infection. Mycopathogia 148:87–95

    Article  CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8(1):e1002448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gómez-Gómez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  PubMed  CAS  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aslam SN, Newman MA, Erbs G, Morissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Iearno T, Molinaro A, Jackson RW, Knight MR, Cooper RM (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Aslam SN, Erbs G, Morrissey K, Newman M-A, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM (2009) Microbe-associated molecular pattern (MAMP) signatures, synergy, size, and charge: influences on perception or mobility and host defense responses. Mol Plant Pathol 10:375–387

    Article  PubMed  CAS  Google Scholar 

  • Asselbergh B, Achuo AE, Höfte M, Van Gijsegem F (2008a) Absicisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    PubMed  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008b) Global switches and fine-tuning ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    Article  PubMed  CAS  Google Scholar 

  • Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I (2009) Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. Mol Plant-Microbe Interact 22:166–175

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microbe Interact 16:1118–1128

    Article  PubMed  CAS  Google Scholar 

  • Bae H, Kim MS, Sicher RC, Bae H-J, Bailey BA (2006) Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141:1056–1067

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balaji V, Mayrose M, Scherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G (2008) Tomato transcriptional changes in response to Clavibacter michiganensis reveal a role for ethylene in disease development. Plant Physiol 146:1797–1809

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  PubMed  CAS  Google Scholar 

  • Bartetzko V, Sonnewald S, Vogel F, Hartner K, Stadler R, Hammes UZ, Bornke F (2009) The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense responses. Mol Plant-Microbe Interact 22:655–664

    Article  PubMed  CAS  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He Y, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant-Microbe Interact 17:763–770

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bethke G, Pecher P, Eschen-Lippold L, Tsuda K, Katagiri F, Glazebrook J, Scheel D, Lee J (2012) Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. Mol Plant-Microbe Interact 25:471–480

    Article  PubMed  CAS  Google Scholar 

  • Bi D, Cheng YT, Li X, Zhang Y (2010) Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase. Plant Physiol 153:1771–1779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Block A, Li G, Fu ZQ, Alfano JR (2008) Phytopathogen type III effector weaponry and their plant targets. Curr Opin Plant Biol 11:396–403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh C-K, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzihi C, Staehelin A, Christopher DA (2007) The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573

    Article  PubMed  CAS  Google Scholar 

  • Bos JI, Chaparro-Garcia A, Quesada-Ocampo LM, McSpadden Gardener BB, Kamoun S (2009) Distinct amino acids of the Phytophthora infestans effector AVR3a condition activation of R3a hypersensitivity and suppression of cell death. Mol Plant-Microbe Interact 22:269–281

    Article  PubMed  CAS  Google Scholar 

  • Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Zhendong T, Engelhardt S, Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch PRJ (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci U S A 107:9909–9914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boudart G, Charpentier M, Lafitte C, Martinez Y, Jauneau A, Gaulin E, Esquerré-Tugayé M-T, Dumas B (2003) Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiol 131:93–101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signaling via Ca2+ sensor protein kinases. Nature 464:418–422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci U S A 107:14502–14507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defenses in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    Article  PubMed  CAS  Google Scholar 

  • Cabral A, Oome S, Sander N, Kūfner I, Nūrnberger T, van den Ackerveken G (2012) Nontoxic Nep-1 like proteins of the downy mildew pathogen Hyaloperonospora arabidopsis: repression of necrosis-inducing activity by a surface-exposed region. Mol Plant-Microbe Interact 25:697–708

    Article  PubMed  CAS  Google Scholar 

  • Canet JV, Dobón A, Tornero P (2012) Non-recognition-of BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24:4220–4235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cernadas RA, Benedetti CE (2009) Roles of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci 177:190–195

    Article  CAS  Google Scholar 

  • Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD, Zipfel C, Rathjen JP, Kamoun S, Schornack S (2011) The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One 6(1):e16608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC (2010a) A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 285:10454–10463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC (2010b) A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 285:10454–10463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC (2010c) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci U S A 107:8029–8034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng B, Yu X, Ma Z, Dong S, Dou D, Wang Y, Zheng X (2012) Phytophthora sojae effector Avh331 suppresses the plant defence response by disturbing the MAPK signaling pathway. Physiol Mol Plant Pathol 77:1–9

    Article  CAS  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact 18:511–520

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Boller T, Robatzek S (2007a) Flagellin signaling in plant immunity. Adv Exp Med Biol 598:358–371

    Article  PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007b) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper Abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek K-H, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295

    Article  PubMed  CAS  Google Scholar 

  • Clarke SF, Burritt DJ, Guy PL (1998) Influence of plant hormones on virus replication and pathogenesis-related proteins in Phaseolus vulgaris L infected with white clover mosaic potexvirus. Physiol Mol Plant Pathol 53:195–207

    Article  CAS  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  PubMed  CAS  Google Scholar 

  • Cools HJ, Ishii H (2002) Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol Mol Plant Pathol 61:273–280

    Article  CAS  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM (2005) Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 102:1791–1796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Höfte H, Callewaert N, Van Brueusegem F, Höfte M (2010) Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol 154:847–860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • D’Amelio R, Berta G, Gamalero E, Massa N, Avidano L, Cantamessa S, D’Agostino G, Bosco D, Marzachi C (2011) Increased plant tolerance against chrysanthemum yellows phytoplasma (Candidatus Phytoplasma asteris) following double inoculation with Glomus mosseae BEG12 and Pseudomonas putida SIPflRif. Plant Pathol 60:1014–1022

    Article  Google Scholar 

  • DebRoy S, Thilmony R, Kwack Y-B, Nomura K, He S-Y (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101:9927–9932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deepak SA, Ishii H, Park P (2006) Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiol Mol Plant Pathol 69:52–61

    Article  CAS  Google Scholar 

  • de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955

    Article  PubMed  CAS  Google Scholar 

  • de Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G, Forsyth A, Robatzek S, Grant M, Boch J (2006) Pseudomonas syringae effector AvrPtroB suppresses basal defence in Arabidopsis. Plant J 47:368–382

    Article  PubMed  CAS  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressable multifaceted defense response. Plant Physiol 148:1996–2012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Yang Y, Vera Cruz C, Höfte M (2010) Abscisic acid –induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol 152:2036–2052

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi I-R, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    Article  PubMed  CAS  Google Scholar 

  • Delker C, Zolman BK, Miersch O, Wasternack C (2007) Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal β-oxidation enzymes – Additional proof by properties of pex6 and aim1. Phytochemistry 68:1542–1650

    Article  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Tha Arabidopsis Book e0156. doi:10.1199/tab.0156

    Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:Article 155. p1–12

    Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA (1995a) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    PubMed Central  PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995b) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CIA, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci U S A 103:8888–8893

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Droillard MJ, Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574:42–48

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Eckardt NA (2008) Chitin signaling in plants: insights into the perception of fungal pathogens and rhizobacterial strains. Plant Cell 20:241–243

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El Oirdi M, Bouarab K (2007) Plant signaling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol 175:131–139

    Article  PubMed  CAS  Google Scholar 

  • El Rahman TA, El Oirdi M, Gonzalez-Lamothe R, Bouarab K (2012) Necrotrophic pathogens use salicylic acid signaling pathway to promote disease development in tomato. Mol Plant-Microbe Interact 25:1584–1593

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt S, Boevink PC, Armstrong MR, Ramos MB, Hein I, Birch PRJ (2012) Relocalization of late blight resistance protein R3a to endosomal compartments and required for the immune response. Plant Cell 24:5142–5158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eulgem T, Weighman VJ, Chang H-S, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl JL (2004) Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol 135:1129–1144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 146:1421–1439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fayza AF, Sabrey YMM (2006) Induction of resistance in Phaseolus vulgaris against TNV by salicylic acid and kinetin. Int J Agric Biol 8:47–51

    Google Scholar 

  • Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trèmousaygue D, Deslandes L, Marco Y (2012) Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. New Phytol 194:1035–1045

    Google Scholar 

  • Ferrari S, Plotnokova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  PubMed  CAS  Google Scholar 

  • Foissner L, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signaling pathway. Nature 462:660–664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fujiwara S, Tanaka N, Kaneda T, Takayama S, Isogai A, Che F-S (2004) Rice cDNA microarray-based gene expression profiling of the response to flagellin perception in cultured rice cells. Mol Plant-Microbe Interact 17:986–998

    Article  PubMed  CAS  Google Scholar 

  • Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schchtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao M, Liu J, Zhang Z, Cheng F, Chen S, Zhang Y (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18:1190–1198

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenae ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22:222–231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao Y, Li T, Liu Y, Ren C, Zhao Y, Wang M (2010a) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 37:3957–3965

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Li T, Zhao Y, Ren C, Liu Y, Wang M (2010b) Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in Brassica napus. Plant Mol Biol Rep 28:450–459

    Article  CAS  Google Scholar 

  • Garcia-Andrade J, Ramirez V, Flors V, Vera P (2011) Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J 67:783–794

    Article  PubMed  CAS  Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Métraux J-P (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of the Arabidopsis. Plant Physiol 147:1279–1287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol 113:269–279

    PubMed Central  PubMed  CAS  Google Scholar 

  • Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF (2008) Signaling pathways that regulate the enhanced disease resistance of Arabidopsis “Defense, No death” mutants. Mol Plant-Microbe Interact 21:1285–1296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geraats BPJ, Bakker PAHM, Lawrence CB, Achuo EA, Höfte M, van Loon LC (2003) Ethylene-insensitive tobacco shows differentially altered susceptibility to different pathogens. Phytopathology 93:813–821

    Article  PubMed  Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4: Article 72:1–11

    Google Scholar 

  • Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009a) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Ibanez S, Ntoukakis V, Rathjen JP (2009b) The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signal Behav 4:539–541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  PubMed  CAS  Google Scholar 

  • Goff KE, Ramonell KM (2007) The role and regulation of receptor-like kinases in plant defense. Gene Regul Syst Biol 1:167–175

    Google Scholar 

  • Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163

    Article  PubMed Central  PubMed  Google Scholar 

  • González-Lamothe R, El Oirdi M, Brisson N, Bouarab K (2012) The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. Plant Cell 24:762–777

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goritsching S, Zhang Y, Li X (2007) The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant J 49:540–551

    Article  CAS  Google Scholar 

  • Gray WM, Muskett PR, Chuang H-W, Parker JE (2003) Arabidopsis SGT1b is required for SCFTIR1-mediated auxin response. Plant Cell 15:1310–1319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grefen C, Städele K, Ruzicka K, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  PubMed  CAS  Google Scholar 

  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, Graaff EVD, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    Article  PubMed  CAS  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    Article  PubMed  CAS  Google Scholar 

  • Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hamel L-P, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232:787–806

    Article  PubMed  CAS  Google Scholar 

  • Hann DR, Rathjen JP (2007) Early events in the pathogenecity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49:607–618

    Article  PubMed  CAS  Google Scholar 

  • Hann DR, Gimenez-Ibanez S, Rathjen JP (2010) Bacterial virulence effectors and their activities. Curr Opin Plant Biol 13:388–393

    Article  PubMed  CAS  Google Scholar 

  • Hauck P, Thilmony R, He SY (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci U S A 100:8577–8582

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayashi K-I (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53:965–975

    Article  PubMed  CAS  Google Scholar 

  • He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125:563–575

    Article  PubMed  CAS  Google Scholar 

  • He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 9:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hogenhout SA, van der Hoorn RAI, Terauchi R, Kamou S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microbe Interact 22:115–122

    Article  PubMed  CAS  Google Scholar 

  • Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H (2007) The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant-Microbe Interact 20:72–81

    Article  PubMed  CAS  Google Scholar 

  • Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to Tobacco necrosis virus (TNV). Plant Physiol Biochem 46:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4:66–68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ishikawa A (2009) The Arabidopsis G-protein beta-subunit is required for defense response against Agrobacterium tumefaciens. Biosci Biotechnol Biochem 73:47–52

    Article  PubMed  CAS  Google Scholar 

  • Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142:1202–1215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Janjusevic R, Abramovitch RB, Martin GB, Stebbino CE (2006) A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311:222–226

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj J, Rahman M, Wan A, Punja ZK (2009) Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann Appl Biol 155:71–80

    Article  CAS  Google Scholar 

  • Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT (2007) A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 17:499–508

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci U S A 96:13583–13588

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johansson A, Staal J, Dixelius C (2006) Early responses in the Arabidopsis- Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol Plant Microbe Interact 19:958–969

    Article  PubMed  CAS  Google Scholar 

  • Johnson C, Mhatre A, Arias J (2008) NPR1 preferentially binds to the DNA-inactive form of Arabidopsis TGA2. Biochim Biophys Acta 1779:583–589

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Article  PubMed  CAS  Google Scholar 

  • Kachroo P, Yoshioka K, Shah J, Dooner HK, Klessig DF (2000) Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene and jasmonate independent. Plant Cell 12:677–690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci U S A 98:9448–9453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF (2003a) Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol Plant-Microbe Interact 16:1022–1029

    Article  PubMed  CAS  Google Scholar 

  • Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P (2003b) Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15:2952–2965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228:977–987

    Article  PubMed  CAS  Google Scholar 

  • Katsir L, Schilmiller A, Staswick P, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105:7100–7105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    Article  PubMed  CAS  Google Scholar 

  • Keates SE, Kostman TA, Anderson JD, Bailey BA (2003) Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiol 132:1610–1622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C, Thomma BPHJ, Albrecht C, de Vries SC, Hirt H, Nürnberger T (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K (2011) Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 22:741–748

    Article  PubMed  CAS  Google Scholar 

  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159:501–516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim S-Y, Kim Y-C, Seong ES, Lee Y-H, Park M, Choi D (2007) The chili pepper CaATL1: an AT-hook motif-containing transcription factor implicated in defence responses against pathogens. Mol Plant Pathol 8:761–771

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • King SR, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O, Win J, Kamoun S, Birch PR, Banfield MJ (2014) Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKƐ to suppress plant immune signaling. Plant Cell 26:1345–1359

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  PubMed  CAS  Google Scholar 

  • Klarzynski O, Plesse B, Joubert J-M, Yvin J-C, Kopp M, Kloareg B, Fritig B (2000) Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1037

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant-Microbe Interact 23:446–457

    Article  PubMed  CAS  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant-Microbe Interact 20:120–128

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9

    Article  CAS  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated-mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 2940–2945

    Google Scholar 

  • Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant-Microbe Interact 17:131–139

    Article  PubMed  CAS  Google Scholar 

  • Kufner I, Ottmann C, Oecking C, Nūrnberger T (2009) Cytolytic toxins as triggers of plant immune response. Plant Signal Behav 10:977–979

    Article  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kwon C (2010) Plant defense responses coming to shape. Plant Pathol J 26:115–120

    Article  CAS  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Stakawicz B, Jones JDG, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defense activator acibenzalor-S-methyl primes cowpea [Vigna unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol Mol Plant Pathol 58:199–208

    Article  CAS  Google Scholar 

  • Laurie-Berry N, Joardar V, Street JH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant-Microbe Interact 19:789–800

    Article  PubMed  CAS  Google Scholar 

  • Laxalt AM, Raho N, ten Have A, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited cells. J Biol Chem 282:21160–21168

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signaling pathways. New Phytol 171:249–269

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux–Ouaked D, Pugin A, Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant Microbe Interact 13:821–829

    Article  PubMed  Google Scholar 

  • Lee H-I, León J, Raskin I (1995) Biosynthesis and mechanism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee C-W, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Mṻller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948–2962

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee W-S, Fu S-F, Verchot-Lubicz J, Carr JP (2011) Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. BMC Plant Biol 11:41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lehtonen NT, Akita M, Frank W, Reski R, Valkonen JPT (2012) Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor. Mol Plant Microbe Interact 25:363–371

    Article  PubMed  CAS  Google Scholar 

  • Leon-Reyes A, Du Y, Koornneef A, Proietti S, Körbes AP, Memelink J, Pieterse CMJ, Ritsema T (2010) Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol Plant-Microbe Interact 23:187–197

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li XY, Lin H, Zhang W, Zou Y, Zhang J, Tang X, Zhou JM (2005) Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci U S A 102:12990–12995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM, Yu X (2003) Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiol Plant 119:544–553

    Article  CAS  Google Scholar 

  • Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979

    Article  PubMed  CAS  Google Scholar 

  • Liu J-Z, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu W-L, Lee Y, Nettleton D, Hill JH, Whitham SA (2011a) Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol 157:1363–1378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu P-P, von Dahl CC, Klessig DF (2011b) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lizasa E, Mitsutomi M, Nagano Y (2010) Direct binding of a plant LysM receptor-like kinase LysM RLK1/CERK1 to chitin in vitro. J Biol Chem 285:2996–3004

    Article  CAS  Google Scholar 

  • Llorente E, Muskett P, Sáuchez_Vallet A, Lopez G, Ramos B, Sánchez Rodriguez C, Jordá L, Parker J, Molina A (2008) Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant 1:496–509

    Article  PubMed  CAS  Google Scholar 

  • Lohmann GV, Shimoda Y, Nielsen W, Jørgensen FG, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu S (2010) Evolution and regulation of the Lotus japonica LysM receptor gene family. Mol Plant-Microbe Interact 23:510–521

    Article  PubMed  CAS  Google Scholar 

  • Love AJ, Yun B-W, Laval V, Loake GJ, Milner JL (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139:935–948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lozano-Durán R, Bejarano ER (2011) Geminivirus C2 protein might be the key player for geminiviral co-option of SCF-mediated ubiquitination. Plant Signal Behav 6:999–1001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lozano-Durán R, Rosas-Diaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER (2011) Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23:1014–1032

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107:495–501

    Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Makandar R, Nalam VJ, Lee H, Trick HN, Dong Y, Shah J (2012) Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Mol Plant-Microbe Interact 25:431–439

    Article  PubMed  CAS  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98:196–204

    Article  PubMed  CAS  Google Scholar 

  • Mateo A, Muhlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McDonald MC, Oliver RP, Friesen TL, Brunner PC, McDonald BA (2013) Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species. New Phytol 199:241–251

    Article  PubMed  CAS  Google Scholar 

  • McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S, Morales J, Whisson SC, Beynon JL, Birch PR (2013) An RXLR effector from Phytophthora infestans prevents relocalisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog 9(10) e 1003670. doi:10.1371/journal ppat 1003670

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact 19:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154:391–400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Milat ML, Ricci P, Blein JP (1991) Capsidiol and ethylene production by tobacco cells in response to cryptogein, an elicitor from Phytophthora cryptogea. Phytochemistry 30:2171–2173

    Article  CAS  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y (2008) Characteristic expression of twelve PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genomics 279:415–427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signaling. Nature 462:609–614

    Article  PubMed  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191

    Article  PubMed  CAS  Google Scholar 

  • Molina L, Kahmann R (2007) A Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Molinaro A, Newman M-A, Lanzetta R, Parrilli M (2009) The structures of lipopolysaccharides from plant-associated gram-negative bacteria. Eur J Org Chem 34:5887–5896

    Article  CAS  Google Scholar 

  • Molloy S (2010) Plant immunity: helping plants to fight back. Nat Rev Microbiol 8:312–313

    Article  PubMed  CAS  Google Scholar 

  • Momol MT, Olson SM, Funderburk JE, Stavisky J, Marois JJ (2004) Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Dis 88:882–890

    Article  CAS  Google Scholar 

  • Moreau M, Degrave A, Vedel R, Bitton F, Patrit O, Renou J-P, Barny M-A, Fagard M (2012a) EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora. Mol Plant-Microbe Interact 25:421–430

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Tian M, Klessig DF (2012b) Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res. doi:10.1038/cr 2012.100

    PubMed Central  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant-Microbe Interact 23:340–351

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Renlin X, Casson SA, Stoddart WM, Routledge APM, Draper J (2004) Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defense signaling pathways between dicotyledonous plants and grasses. Mol Plant Pathol 5:267–280

    Article  PubMed  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Na R, Yu D, Qutob D, Zhao J, Gijzen M (2013) Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d. Mol Plant Microbe Interact 26:969–976

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Yoshioka K, Yasuda M, Nitta T, Arai Y, Yoshida S, Yamaguchi I (2002) Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation. Physiol Plant Pathol 61:197–203

    Article  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Okage R, Nishioka M, Arie T, Yoshida S (2003) A pyrazole derivative induces systemic acquired resistance with a new type of action. Plant Cell Physiol 44:S179–S179

    Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferruzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene –mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nandi A, Kachroo P, Fukushige H, Hildebrand DF, Klessig DF, Shah J (2003) Ethylene and jasmonic acid signaling pathways affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact 18:588–599

    Article  Google Scholar 

  • Nandi A, Moeder W, Kachroo P, Klessig DF, Shah J (2005) Arabidopsis ssi-2 conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol Plant-Microbe Interact 18:363–370

    Article  PubMed  CAS  Google Scholar 

  • Naseem M, Philippi N, Hussain A, Wangorsch G, Ahmed N, Dandekar T (2012) Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24:1793–1814

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dhamasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of MATE transporter family. Plant Cell 14:275–286

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naylor M, Murphy AM, Berry JO, Carr JP (1998) Salicylic acid can induce resistance in plant virus movement. Mol Plant-Microbe Interact 11:860–868

    Article  CAS  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139

    Article  PubMed  CAS  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nürnberger T, Kṻfner I (2011) The role of the plant plasma membrane in microbial sensing and innate immunity: the plant plasma membrane. Plant Cell Monogr 19:471–483

    Article  Google Scholar 

  • O’Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, Klee HJ (2003) Susceptible to intolerance – a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33:245–257

    Article  PubMed  Google Scholar 

  • Ogawa D, Nakajima N, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2006) The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves. Plant Biotechnol 23:395–398

    Article  CAS  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Pantelides S, Tjamos SE, Pappa S, Kargakis M, Paplomatas EJ (2013) The ethylene receptor ETR1 is required for Fusarium oxysporum pathogenicity. Plant Pathol 62:1302–1309

    Article  CAS  Google Scholar 

  • Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y (2000) Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol 124:725–732

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park C-J, Han S-W, Chen X, Ronald PC (2010) Elucidation of XA21-mediated innate immunity. Cell Microbiol 12:1017–1025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumam P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B, Wang GL (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–4762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–50

    Article  CAS  Google Scholar 

  • Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signaling. J Expt Bot 64:2629–2639

    Article  CAS  Google Scholar 

  • Pei Z-M, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Peng J-L, Bao Z-L, Ren H-Y, Wang J-S, Dong HS (2004) Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch I, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731

    Article  PubMed  CAS  Google Scholar 

  • Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The Lysin motif receptor-like kinase (LysM-RLK) is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ (2012) Prime time for transgenerational defense. Plant Physiol 158:545

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pitzschke A, Hirt H (2009) Disentangling the complexity of mitogen-activated protein kinases and reactive oxygen species signaling. Plant Physiol 149:606–615

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009a) A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signaling. Mol Plant 2:120–137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009b) MAPK cascade signaling networks in plant defence. Curr Opin Plant Biol 12:1–6

    Article  CAS  Google Scholar 

  • Pogány M, Koehl J, Heiser I, Elstner EF, Barna B (2004) Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol 65:39–47

    Article  CAS  Google Scholar 

  • Poinssot B, Vandelle E, Bentejac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thevenot P, Pigin A (2003) The endopolygalacturonase I from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant-Microbe Interact 16:553–564

    Article  PubMed  CAS  Google Scholar 

  • Postel S, Kufner I, Beueter C, Mazzotta S, Schwedt A, Borlotti A, Halter T, Kemmerling B, Nürnberger T (2010) The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol 89:169–174

    Article  PubMed  CAS  Google Scholar 

  • Potlakayala SD, Reed DW, Covello PS, Fobert PR (2007) Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 97:794–802

    Article  PubMed  CAS  Google Scholar 

  • Po-Wen C, Singh P, Zimmerli L (2013) Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol Plant Pathol 14:58–70

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant-Microbe Interact 26:227–239

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant-Microbe Interact 20:492–499

    Article  PubMed  CAS  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by NEP1-like proteins. Plant Cell 18:3721–3744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qutob D, Tedman-Jones J, Dong S, Kufluk K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD, Tyler BM, Gijzen M (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS One 4, e5066. doi:10.1371/journalpone0005066

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill L (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Kuldau A, Uddin W (2014) Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 104:614–625

    Article  PubMed  CAS  Google Scholar 

  • Rajput NA, Zhang M, Ru Y, Liu T, Mafurah JJ, Dou D (2014) Phytophthora sojae effector PsCRN70 suppresses plant defenses in Nicotiana benthamiana. PLoS One 9(5):e98114. doi:10.1371/jornal pone 0098114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rakwal R, Tamogani S, Agrawal GK, Iwahashi H (2002) Octadecanoid signaling component ‘burst’ in rice (Oryza sativa L) seedlings leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Liu Y, Yang K-Y, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 105:5638–5643

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis Genes. Dev 20:537–542

    CAS  Google Scholar 

  • Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu S, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547

    Article  PubMed  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 308:1783–1786l

    Google Scholar 

  • Rosli HG, Zheng Y, Pombo MA, Zhong S, Bombarely A, Fei Z, Collmer A, Martin GB (2013) Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biol 14:R139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rotblat B, Enshel-Seijffers D, Gershoni MJ, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1–7

    Article  Google Scholar 

  • Ryan CA, Huffaker A, Yamaguchi Y (2007) New insights into innate immunity in Arabidopsis. Cell Microbiol 9:1902–1908

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 336–340

    Google Scholar 

  • Sahana N, Kaur H, Basavaraj TF, Jain RK, Palukaitis P, Canto T, Praveen S (2012) Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteasomal catalytic activity is modulated by viral factor HcPro. PLoS One 7:e52546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saijo Y (2010) ER quality control of immune receptors and regulators in plants. Cell Microbiol 12:716–724

    Article  PubMed  CAS  Google Scholar 

  • Sänchez G, Gerhardt N, Siciliano F, Vojnov A, Malcuit I, Marono MR (2010) Salicylic acid is involved in the Nb-mediated defense responses to Potato virus X in Solanum tuberosum. Mol Plant-Microbe Interact 23:394–405

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Vallet A, López C, Ramos B, Delgado-Cerezo M, Riviere P, Llorente F, Fernández PV, Miedes E, Estevez JM, Grant M, Molina A (2012) Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol 160:2109–2124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Expt Bot 64:2565–2577

    Article  CAS  Google Scholar 

  • Schiene K, Puhler A, Niehaus K (2000) Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a Rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. Mol Gen Genet 263:761–770

    Article  PubMed  CAS  Google Scholar 

  • Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel K-H (2011) N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Koo AJK, Howe GA (2006) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–824

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Pflugmacher M, Klages S, Maser A, Mock A, Stahl DJ (2008) Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet. Mol Plant Pathol 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, Van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10:795–801

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel K-H, Hückelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36:589–601

    Article  PubMed  CAS  Google Scholar 

  • Schulze B, Mentzel T, Jehle A, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285:9444–9451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schweizer P, Buchala A, Dudler RA, Metraux JP (1998) Induced systemic resistance in wounded rice plants. Plant J 14:475–481

    Article  CAS  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 1(4):54–61

    Article  CAS  Google Scholar 

  • Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153:467–478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seo PJ, Park C-M (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  PubMed  CAS  Google Scholar 

  • Shan L, He P, Sheen J (2007) Intercepting host MAPK signaling cascades by bacterial type III effectors. Cell Host Microbe 1:167–174

    Article  PubMed  CAS  Google Scholar 

  • Shan L, He P, Li J, Heese A, Peck SC, Nümberger T, Martin GB, Sheen J (2008) Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sheard LB, Zheng N (2009) Plant biology signal advance for abscisic acid. Nature 462:575–576

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Liu H, Yuan B, Li X, Xu C, Wang S (2011) OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ 34:179–191

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishi-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shiu S-H, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113:RE22

    Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494

    Article  PubMed  CAS  Google Scholar 

  • Silipo A, Mollinaro A (2010) The diversity of the core oligosaccharide in lipopolysaccharides, In: X Wang and P J Quinn (eds) Endotoxins: structure, function and recognition, subcellular biochemistry, vol 53, Part 1. Springer Science, Business Media, BV, pp 69–99

    Google Scholar 

  • Silipo A, Sturiale L, Garozzo D, Erbs G, Tandrup Poulsen T, Lanzetta R, Dow JM, Parrilli M, Newman M-A, Molinaro A (2008) The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chem BioChem 9:896–904

    CAS  Google Scholar 

  • Sklodowska M, Gajewski E, Kuzniak E, Mikiciński A, Sobiczewski P (2010) BTH-mediated antioxidant system responses in apple leaf tissues. Sci Hortic 125:34–40

    Article  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein-3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sohn KH, Lei R, Nemri A, Jones JDG (2007) The downy mildew effectors ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19:4077–4090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Son GH, Wan J, Kim HJ, Nguyen XC, ChungW-S HJC, Stacey G (2012) Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant Microbe Interact 25:48–60

    Article  PubMed  CAS  Google Scholar 

  • Song C, Yang B (2010) Mutagenesis of 18 type II effectors reveals virulence function of XopZPxo99 in Xanthomonas oryzae pv oryzae. Mol Plant-Microbe Interact 23:893–902

    Article  PubMed  CAS  Google Scholar 

  • Song JT, Lu H, McDowell JM, Greenberg JT (2004) A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J 40:200–212

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune response. Cell Host Microbe 3:348–351

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 99:13307–13312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun F, Liu P, Xu J, Dong H (2010) Mutation in RAP26L, a transactivator of the ERF transcription factor family, enhances Arabidopsis resistance to Pseudomonas syringae. Physiol Mol Plant Pathol 74:295–302

    Article  CAS  Google Scholar 

  • Sun W, Cao Y, Labby KJ, Bittel P, Boller T, Bent AF (2012) Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and contributions of specific domains to signaling function. Plant Cell 24:1096–1113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szczesny R, Buttner B, Escolar L, Schulze S, Seiferth A, Bonas U (2010) Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytol 187:1058–1074

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Kusaka K, Betsuyaku S, Shinogi T, Sakamoto M, Ohura Y, Hata S, Mori T, Tosa Y, Mayama S (2005) Victorin triggers programmed cell death and the defense response via interaction with a cell surface mediator. Plant Cell Physiol 46:1787–1798

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003a) Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44:342–349

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Shimizu R, Nakagima R, Toyoda K, Shiraishi T, Ichinose Y (2003b) Differential effects of flagellins from Pseudomonas syringae pv tabaci, tomato, and glycinea on plant defense response. Plant Physiol Biochem 41:165–174

    Article  CAS  Google Scholar 

  • Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv tabaci. Cell Microbiol 8:923–938

    Article  PubMed  CAS  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che F-S (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact 21:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Flagellin glycosylation island in Pseudomonas syringae pv glycinea and its role in host specificity. J Bacteriol 185:6658–6665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takeuchi K, Ono H, Yoshida M, Ishi T, Katch E, Taguchi F, Miki R, Murata K, Kaku H, Ichinose Y (2007) Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in D and L configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. J Bacteriol 189:6945–6956

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takezawa D (2000) A rapid induction by elicitors of the mRNA encoding CCD-1, a 14 kDa Ca2+-binding protein in wheat cultured cells. Plant Mol Biol 42:807–817

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signaling? Trend Plant Sci 8:286–293

    Article  CAS  Google Scholar 

  • Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, Hayashi K-I, Hayama H, Yoshioka H, Nakamura Y (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Expt Bot 64:1049–1059

    Article  CAS  Google Scholar 

  • Tavernier E, Wendehenne J-P, Blein J-P, Pugin A (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of a hypersensitive reaction in tobacco cells. Plant Physiol 109:1025–1031

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Penninckx I, Broekaert WF, Cammue BPA (2001a) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Tierens KFM, Penninckx I, Mauch-Mani B, Broekaert WF, Cammue BPA (2001b) Different microorganisms differentially induce Arabidopsis disease response pathways. Plant Physiol Biochem 39:673–680

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten M (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tsuda K, Katagiri P (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  PubMed  CAS  Google Scholar 

  • Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53:763–775

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M (2008) Release of the rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell 20:2437–2446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) Phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv tomato DC3000. Mol Plant-Microbe Interact 20:955–965

    Article  PubMed  CAS  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Te W, Hossain M-A, Masuda C, Miura A, Nakamura Y, Mori I-C, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valent B, Khang CH (2010) Recent advances in rice blast effector research. Curr Opin Plant Biol 13:434–441

    Article  PubMed  CAS  Google Scholar 

  • van Damme M, Huibers RP, Elberse J, Van den Ackerveken G (2008) Arabidopsis DMR6 encodes a putative 2OG-Fe(II)oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J 54:785–793

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inzé D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci U S A 100:16113–16118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G, Maclean D, Takken FL, Jones JD (2008) The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomsto. Plant Cell 20:697–719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–751

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Verk MC, Pappaaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 140:1983–1995

    Article  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens Activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P (2004) Concise encyclopedia of plant pathology. Haworth Press, Binghamton, p 619

    Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, IInd edn. CRC Press/Taylor Francis Group, Boca Raton, p 510

    Google Scholar 

  • Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht, p 442

    Book  Google Scholar 

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C, Meriot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vleeshouwers VGAA, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microbe Interact 27:196–206

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Müller A, Chung K-M, Yap Y-K, Nakamura K, Weiler E, Sano H (2006) Expression of a WIPK-activated transcription factor results in increase of endogenous salicylic acid and pathogen resistance in tobacco plants. Plant Cell Physiol 47:1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Zhang S, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S, Kim S-Y, Stacey MG, Stacey G (2008a) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wan J, Zhang X-C, Stacey G (2008b) Chitin signaling and plant disease resistance. Plant Signal Behav 3:831–833

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Zien C, Afitlhile M, Welti R, Hildebrand DF, Wang X (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8:855–865

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Eyles A, Mandich D, Bonello P (2006) Systemic aspects of host-pathogen interactions in Austrian pine (Pinus nigra): a proteomics approach. Physiol Mol Plant Pathol 68:149–157

    Article  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gao M, Li Q, Wang L, Jeon J-S, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant-Microbe Interact 21:294–303

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant Microbe Interact 22:235–244

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Fiers M, Ellendorff U, Wang Z, deWit PJGM, Angenent GC, Thomma BPHJ (2010a) The diverse roles of extracellular leucine-rich repeat-containing receptor-like proteins in plants. Critic Rev Plant Sci 29:285–299

    Article  CAS  Google Scholar 

  • Wang P, Du Y, Li Y, Ren D, Song C-P (2010b) Hydrogen peroxdide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, Zhou JM (2010c) A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated kinase kinases. Plant Cell 22:2033–2044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012) Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383–389

    Article  PubMed  CAS  Google Scholar 

  • Wild M, Daviẻre JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signaling in plants. Plant Cell & Environ 31:622–631

    Article  CAS  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    Article  CAS  Google Scholar 

  • Wu W-H, Assmann SM (1994) A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc Natl Acad Sci U S A 91:6310–6314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu S, Lu D, Kabbage M, Wei HL, Swingle B, Records AR, Dickman M, He P, Shan L (2011) Bacterial effector HopF2 suppresses arabidopsis innate immunity of the plasma membrane. Mol Plant Microbe Interact 24:585–593

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, Kachroo P (2010) The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol 154:833–846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou J-M (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80

    Article  PubMed  CAS  Google Scholar 

  • Xiang T, Zong N, Zhang J, Chen J, Chen M, Zhou J-M (2011) BAK1 is not a target of the Pseudomonas syringae effector AvrPto. Mol Plant-Microbe Interact 24:100–107

    Article  PubMed  CAS  Google Scholar 

  • Xin XF, He SY (2013) Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signalling in plants. Annu Rev Phytopathol 51:1003–1011

    Article  CAS  Google Scholar 

  • Xing D, Chen Z (2006) Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens. Plant Sci 171:251–262

    Article  CAS  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Song F, Zheng Z (2006) OsBISAMT1, a gene encoding S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Mol Biol Rep 33:223–231

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae suppressing salicylic acid-mediated defenses. PLoS One 8:e67413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yalowsky S, Baluska F, Jones A (2010) Integrated G proteins signaling in plants. Springer, Heidelberg

    Book  Google Scholar 

  • Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJ, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang D-L, Yang Y, He Z (2013) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6:675–685

    Article  PubMed  CAS  Google Scholar 

  • Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23:523–529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yao C, Wu Y, Nie H, Tang D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant J 71:1015–1028

    Article  PubMed  CAS  Google Scholar 

  • Yin W, Dong S, Zhai L, Lin Y, Zheng X, Wang Y (2013) The Phytophthora sojae Avr1d gene encodes an RxLR-dEER effector with presence and absence polymorphisms among pathogen strains. Mol Plant Microbe Interact 26:958–968

    Article  PubMed  CAS  Google Scholar 

  • Yong G, Tingting L, Yang L, Cabda R, Yun Z, Maolin W (2010) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassicus napus. Mol Biol Rep 37:3957–3965

    Article  CAS  Google Scholar 

  • Yoshioka K, Moeder W, Kang H-G, Kachroo P, Masmoudi K, Berkowitz G, Klessig D-F (2006) The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen responses. Plant Cell 18:747–763

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zamioudis C, Peterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  PubMed  CAS  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A 101:15811–15816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeng Q, Wang X, Running MP (2007) Dual lipid modification of Arabidopsis Gγ-subunits is required for efficient plasma membrane targeting. Plant Physiol 143:1119–1131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeng L, Velasquez AC, Munkvold KR, Zhang J, Martin GB (2012) A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J 69:92–103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    Article  PubMed  CAS  Google Scholar 

  • Zhang DP, Wu ZY, Li XY, Zhao ZX (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128:714–725

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Z-G, Wang C, Li J, Ji R, Shen G, Wang S-C, Zhou X, Zheng X-B (2004) The role of SA in the hypersensitive response and systemic acquired resistance induced by elicitor PB90 from Phytophthora boehmeriae. Physiol Mol Plant Pathol 65:31–38

    Article  CAS  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan M, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang A, Jiang MY, Zhang J, Ding H, Xu S, Hu X, Tan M (2007a) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou J-M (2007b) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, He SY, Assmann SM (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56:984–996

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signaling and calcium currents in Arabidopsis guard cells. J Expt Bot 62:2371–2379

    Article  CAS  Google Scholar 

  • Zhang H, Gao Z, Zheng X, Zhang Z (2012a) The role of G-proteins in plant immunity. Plant Signal Behav 7:1284–1288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang L, Li Y, Lu W, Meng F, Wu C, Guo X (2012b) Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot 63:3935–3952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012c) The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24:4294–4309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X, Wu Q, Ren J, Qian W, He S, Huang K, Yu XC, Gao Y, Huang P, An C (2012d) Two novel RING-type ubiquitin ligases, RGLG4 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiol 160:808–822

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang L, Kars I, Essenstam B, Liebrand TWH, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, Ackerveken G, van Kan JAL (2014) Fungal endoploygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:353–364

    Google Scholar 

  • Zhao XM, She XP, Yu W, Liang XM, Du YG (2007) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in resistance of tobacco to Tobacco mosaic virus. J Plant Pathol 89:55–65

    CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:596–605

    Article  CAS  Google Scholar 

  • Zheng X-y, Spivey NW, Zeng W, Liu P-P, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC, Gilroy EM, Chen Y, Kandel K, Sessa G, Birch PRJ, Brunner F (2014) Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog 10(4):e1004057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu YJ, Qiu X, Moore PH, Borth W, Hu J, Ferreira S, Albert HH (2003) Systemic acquired resistance induced by BTH in papaya. Physiol Mol Plant Pathol 63:237–248

    Article  CAS  Google Scholar 

  • Zhu H, Li G-J, Ding L, Cui X, Berg H, Assmann SM, Xia Y (2009) Arabidopsis extra large G-protein 2 (XLG2) interacts with the Gβ subunit of heterotrimeric G protein and functions in disease resistance. Mol Plant 2:513–525

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu L, Li Y, Li L, Yang J, Zhang M (2011a) Ethylene is involved in leafy mustard systemic resistance to Turnip mosaic virus infection through the mitochondrial alternative oxidase pathway. Physiol Mol plant Pathol 76:166–172

    Article  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue LAM, Jiang Z, Kim JM, To TK, Li W, Zhang X, Yu Q, Dong Z, Chen WQ, Seki M, Zhou JM, Guo H (2011b) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Rathjen P (2008) Plant immunity: AvrPto targets the frontline. Curr Biol 18:R218–R220

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vidhyasekaran, P. (2016). Role of Plant Immune Signals and Signaling Systems in Plant Pathogenesis. In: Switching on Plant Innate Immunity Signaling Systems. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-26118-8_2

Download citation

Publish with us

Policies and ethics