Permanent Magnets: History, Current Research, and Outlook

  • R. SkomskiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)


Recent developments in permanent magnetism are summarized, considering both intrinsic and extrinsic properties. After a general introduction to permanent magnetism, several classes of materials are discussed in the light of future improvements. Emphasis is on magnets rich in Fe, Co, and Mn. The search for new magnetic compounds with improved magnetization, Curie temperature, and anisotropy is accompanied by the need to realize a microstructure that ensures high coercivity. This need refers to both bulk magnets, where hcp Co and tetragonal FeNi are briefly discussed as negative and positive examples, respectively, and to aligned hard–soft nanocomposites. A very recent concept is imaginary magnetic hardness, which reflects easy-plane magnetism and may be exploited in some ferromagnetic compounds. In aligned two-phase nanostructures, soft-in-hard geometries are better than hard-in-soft geometries, and different shapes behave different in the first and second quadrants of the hysteresis loops. Both intrinsically and extrinsically, the most important task is to maximize the hard phase anisotropy while maintaining a high magnetization. Anisotropy field and magnetic hardness can be maximized by choosing a small magnetization, but this strategy is detrimental to the energy product. The last section deals with the behavior of permanent magnets above room temperature, with emphasis on nanoscale effects. Throughout the chapter, current research trends are critically evaluated, and several common misconceptions are dispelled.


Domain Wall Energy Product Permanent Magnet Hard Phase Soft Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is partially based on original research supported by DOE BES (DE-FG02-04ER46152, Sect. 3), ARO (Nr. WF911NF-10-2-0099, Sect. 4), ARPA-E (PNNL/Maryland and Argonne/Delaware), DREaM (Ames), HCC, and NCMN. It has also benefitted from discussions and collaborations with B. Balamurugan, R. Choudhary, J. M. D. Coey, S. Constantinides, J. Cui, B. Das, A. Enders, G. C. Hadjipanayis, S. Hirosawa, Y. Jin, A. Kashyap, L.-Q. Ke, M. J. Kramer, L. H. Lewis, S.-H. Liou, J. P. Liu, Y. Liu, P. Kumar, P. Manchanda, R. W. McCallum, F. Pinkerton, T. Rana, S. G. Sankar, J. E. Shield, D. J. Sellmyer, S. Valloppilly, V. Sharma, I. Takeuchi, and W.-Y. Zhang.


  1. 1.
    Bozorth, R.M.: Ferromagnetism. van Nostrand, Princeton (1951)Google Scholar
  2. 2.
    Chikazumi, S.: Physics of Magnetism. Wiley, New York (1964)Google Scholar
  3. 3.
    Skomski, R., Coey, J.M.D.: Permanent Magnetism. Institute of Physics, Bristol (1999)Google Scholar
  4. 4.
    Consider ∇ . (A × H) = B . H, which follows from B = ∇ × A and H = - ∇ϕm. Since ∫ ∇ . (A × H) dV = ∫ (A × H) dS and the respective A and H fields decay as 1/r2 and 1/r3 in infinity, the surface integral and therefore ∫ B . H dV are equal to zeroGoogle Scholar
  5. 5.
    Yensen, T.D.: Development of magnetic material. Elec. J. 18, 93–95 (1921)Google Scholar
  6. 6.
    Skomski, R., Sharma, V., Balamurugan, B., Shield, J.E., Kashyap, A., Sellmyer, D.J.: Anisotropy of doped transition-metal magnets. In: Kobe, S., McGuinness, P. (eds.) Proc. REPM'10, pp. 55–60. Jozef Stefan Institute, Ljubljana (2010)Google Scholar
  7. 7.
    Jellinghaus, W.: New alloys with high coercive force. Z. Tech. Physik 17, 33–36 (1936)Google Scholar
  8. 8.
    Jin, S., Chin, G.Y.: Fe-Cr-Co magnets. IEEE Trans. Magn. 23, 3187–3192 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    Evetts, J.E. (ed.): Concise Encyclopedia of Magnetic and Superconducting Materials. Pergamon, Oxford (1992)Google Scholar
  10. 10.
    Klemmer, T., Hoydick, D., Okumura, H., Zhang, B., Soffa, W.A.: Magnetic hardening and coercivity in L10 ordered fepd ferromagnets. Scr. Met. Mater. 33, l793–1805 (1995)CrossRefGoogle Scholar
  11. 11.
    Kooy, C., Enz, U.: Experimental and theoretical study of the domain configuration in thin layers of BaFe12O19. Philips Res. Rep. 15, 7–29 (1960)Google Scholar
  12. 12.
    Strnat, K., Hoffer, G., Olson, J., Ostertag, W., Becker, J.J.: A family of new cobalt‐base permanent magnet materials. J. Appl. Phys. 38, 1001–1002 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    Kumar, K.: RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63, R13–57 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y.: Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 20, 1584–1589 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S., Matsuura, Y.: Nd-Fe-B permanent magnet materials. Jpn. J. Appl. Phys. 26, 785–800 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Herbst, J.F.: R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–898 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Coey, J.M.D., Sun, H.: Improved magnetic properties by treatment iron-based rare-earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87, L251–L254 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Moriya, H., Tsuchiura, H., Sakuma, A.: First-principles calculation of crystal field parameter near surfaces of Nd2Fe14B. J Appl Phys 105, 07A740-1-3 (2009)Google Scholar
  19. 19.
    Sugimoto, S.: An overview of the Dy-saving project in Japan. In: Kobe, S., McGuinness, P. (eds.) Proc. REPM'10, pp. 103–105. Jozef Stefan Institute, Ljubljana (2010)Google Scholar
  20. 20.
    Sugimoto, S.: Current status and recent topics of rare-earth permanent magnets. J. Phys. D: Appl. Phys. 44, 064001–1-11 (2011)Google Scholar
  21. 21.
    Skomski, R., Kashyap, A., Enders, A.: Is the magnetic anisotropy proportional to the orbital moment?. J. Appl. Phys. 109, 07E143-1-3 (2011)Google Scholar
  22. 22.
    Tanaka, S., Moriya, H., Tsuchiura, H., Sakuma, A., Diviš, M., Novák, P.: First principles study on the local magnetic anisotropy near surfaces of Dy2Fe14B and Nd2Fe14B magnets. J. Appl. Phys. 109, 07A702-1-3 (2011)Google Scholar
  23. 23.
    Nakamura, T., Yasui, A., Kotani, Y., Fukagawa, T., Nishiuchi, T., Iwai, H., Akiya, T., Ohkubo, T., Gohda,Y., Hono, K., Hirosawa, S.: Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism. Appl. Phys. Lett. 105, 202404–1-4 (2014)Google Scholar
  24. 24.
    Brown, D. N., Wu, Z., He, F., Miller, D. J., Herchenroeder, J.W.: Dysprosium-free melt-spun permanent magnets. J. Phys. Condens. Matter. 26, 064202–1-8 (2014)Google Scholar
  25. 25.
    Coey, J.M.D.: Hard magnetic materials: Aperspective. IEEE Trans. Magn. 49, 4671–4681 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)CrossRefGoogle Scholar
  27. 27.
    Skomski, R., Manchanda, P., Kumar, P., Balamurugan, B., Kashyap, A., Sellmyer, D.J.: Predicting the future of permanent-magnet materials (invited). IEEE Trans. Magn. 49, 3215–3220 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    McCallum, R.W., Lewis, L.H., Skomski, R., Kramer, M.J., Anderson, I.E.: Practical aspects of modern and future permanent magnets. Ann. Rev. Mater. Res. 44, 451–477 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Namai, A., Yoshikiyo, M., Yamada, K., Sakurai, Sh., Goto, T., Yoshida, T., Miyazaki, T., Nakajima, M., Suemoto, T., Tokoro, H., Ohkoshi, Sh.-I.: Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Comm. 3, 1035–1-6 (2012).Google Scholar
  30. 30.
    Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3600 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Skomski, R.: Nucleation in Inhomogeneous permanent magnets. Phys. Stat. Sol. B 174, K77–80 (1992)Google Scholar
  32. 32.
    Skomski, R., Coey, J.M.D.: Giant energy product in nanostructured two-phase magnets. Phys. Rev. B 48, 15812–15816 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Goto, E., Hayashi, N., Miyashita, T., Nakagawa, K.: Magnetization and switching characteristics of composite thin magnetic films. J. Appl. Phys. 36, 2951–2958 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    Kronmüller, H.: Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Stat. Sol. B. 144, 385–396 (1987)ADSCrossRefGoogle Scholar
  35. 35.
    Nieber, S., Kronmüller, H.: Nucleation fields in periodic multilayers. Phys. Stat. Sol. B. 153, 367–375 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    Jones, N.: The pull of stronger magnets. Nature 472, 22–23 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Fullerton, E.E., Jiang, S.J., Bader, S.D.: Hard/soft heterostructures: Model exchange-spring magnets. J. Magn. Magn. Mater. 200, 392–404 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    Jiang, J.S., Pearson, J.E., Liu, Z.Y., Kabius, B., Trasobares, S., Miller, D.J., Bader, S.D., Lee, D.R., Haskel, D., Srajer, G., Liu, J.P.: Improving exchange-spring nanocomposite permanent magnets. Appl. Phys. Lett. 85, 5293–5295 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, J, Takahashi, Y.K., Gopalan, R., Hono K.: Sm(Co, Cu)5/Fe exchange spring multilayer films with high energy product. Appl. Phys. Lett. 86, 122509–1-2 (2005)Google Scholar
  40. 40.
    Toga, Y., Moriya, H., Tsuchiura, H., Sakuma, A.: First principles study on interfacial electronic structures in exchange-spring magnets. J. Phys. Conf. Ser. 266, 012046–1-5 (2011)Google Scholar
  41. 41.
    Neu, V., Sawatzki, S., Kopte, M., Mickel, C., Schultz, L.: Fully epitaxial, exchange coupled SmCo/Fe multilayers with energy densities above 400 kJ/m3. IEEE Trans. Magn. 48, 3599–3602 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Sahota, P. K., Liu, Y., Skomski, R., Manchanda, P., Zhang, R., Fangohr, H., Franchin, M., Hadjipanayis, G. C., Kashyap, A., Sellmyer D. J.: Ultrahard magnetic nanostructures. J. Appl. Phys. 111, 07E345-1-3 (2012)Google Scholar
  43. 43.
    Poudyal N., Liu, J. P.: Advances in nanostructured permanent magnets research. J. Phys. D. Appl. Phys. 46, 043001–1-23 (2013)Google Scholar
  44. 44.
    Jiang, J. S., Bader, S. D: Rational design of the exchange-spring permanent magnet. J. Phys. Condens. Matter. 26, 064214–1-9 (2014)Google Scholar
  45. 45.
    Liu, P., Luo, C.P., Liu, Y., Sellmyer, D.J.: High energy products in rapidly annealed nanoscale Fe/Pt multilayers. Appl. Phys. Lett. 72, 483–485 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    Liu, Y., George, T. A., Ralph Skomski., Sellmyer, D. J.: Aligned and exchange-coupled FePt-based films. Appl. Phys. Lett. 99, 172504–1-3 (2011)Google Scholar
  47. 47.
    Roy, D., Anil Kumar, P. S.: Enhancement of (BH)max in a hard-soft-ferrite nanocomposite using exchange spring mechanism. J. Appl. Phys. 106, 073902–1-4 (2009)Google Scholar
  48. 48.
    Cui, W.-B., Takahashi, Y.K., Hono, K.: Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv. Mater. 24, 6530–6535 (2012)CrossRefGoogle Scholar
  49. 49.
    Skomski, R.: Aligned two-phase magnets: permanent magnetism of the future? J. Appl. Phys. 76, 7059–7064 (1994)ADSCrossRefGoogle Scholar
  50. 50.
    Coehoorn, R., de Mooij, D. B., Duchateau, J. P. W. B., Buschow, K. H. J.: Novel permanent magnetic materials made by rapid quenching. J. Physique. 49, C-8, 669–670 (1988)Google Scholar
  51. 51.
    Schneider, J., Eckert, D., Müller, K.-H., Handstein, A., Mühlbach, H., Sassik, H., Kirchmayr, H.R.: Magnetization processes in Nd4Fe77B19 permanent magnetic materials. Mater. Lett. 9, 201–203 (1990)CrossRefGoogle Scholar
  52. 52.
    Manaf, A., Buckley, R.A., Davies, H.A.: New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification. J. Magn. Magn. Mater. 128, 302–306 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    Skomski, R.: Spin-glass permanent magnets. J. Magn. Magn. Mater. 157–158, 713–714 (1996)CrossRefGoogle Scholar
  54. 54.
    Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)ADSCrossRefGoogle Scholar
  55. 55.
    Note that the total magnetostatic self-energy, or dipole-dipole energy, –½μo∫ M . H dV = ½μo D M2 V, is the sum of Ea = ½μo D (1 – D) M2 V and Ei = ½μo D2 M2 VGoogle Scholar
  56. 56.
    Skomski, R.: Simple Models of Magnetism. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
  57. 57.
    Bloch, F., Gentile, G.: Zur anisotropie der magnetisierung ferromagnetischer einkristalle. Z. Phys. 70, 395–408 (1931)ADSCrossRefzbMATHGoogle Scholar
  58. 58.
    Skomski, R., Kashyap, A., Solanki, A., Enders, A., Sellmyer, D. J.: Magnetic anisotropy in itinerant magnets. J. Appl. Phys. 107, 09A735-1-3 (2010)Google Scholar
  59. 59.
    Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter. 15, R841–R896 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    Brown, W.F.: Micromagnetics. Wiley, New York (1963)zbMATHGoogle Scholar
  61. 61.
    Aharoni, A.: Theoretical search for domain nucleation. Rev. Mod. Phys. 34, 227–238 (1962)ADSCrossRefGoogle Scholar
  62. 62.
    Givord, D., Rossignol, M.F.: Coercivity. In: Coey, J.M.D. (ed.) Rare-Earth Iron Permanent Magnets, pp. 218–285. University Press, Oxford (1996)Google Scholar
  63. 63.
    Kronmüller, H., Yang, J. B., Goll, D.: Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds. J. Phys. Condens. Matter. 26, 064210–1-7 (2014)Google Scholar
  64. 64.
    McCurrie, R.A.: Ferromagnetic materials—structure and properties. Academic, London (1994)Google Scholar
  65. 65.
    Skomski, R., Liu, Y., Shield, J. E., Hadjipanayis, G. C., Sellmyer, D. J.: Permanent magnetism of dense-packed nanostructures. J. Appl. Phys. 107, 09A739-1-3 (2010)Google Scholar
  66. 66.
    Zhou, L., Miller, M.K., Lu, P., Ke, L., Skomski, R., Dillon, H., Xing, Q., Palasyuk, A., McCartney, M.R., Smith, D.J., Constantinides, S., McCallum, R.W., Anderson, I.E., Antropov, V., Kramer, M.J.: Architecture and magnetism of alnico. Acta Mater. 74, 224–233 (2014)CrossRefGoogle Scholar
  67. 67.
    Fast, J.D.: Gases in Metals. Macmillan, London (1976)CrossRefGoogle Scholar
  68. 68.
    Burkert, T., Nordström, L., Eriksson, O., Heinonen, O.: Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett. 93, 027203–1-4 (2004)Google Scholar
  69. 69.
    Andersson, G., Burkert, T., Warnicke, P., Björck, M., Sanyal, B., Chacon, C., Zlotea, C., Nordström, L., Nordblad, P., Eriksson, O.: Perpendicular magnetocrystalline anisotropy in tetragonally distorted Fe-Co alloys. Phys. Rev. Lett. 96, 037205–1-4 (2006)Google Scholar
  70. 70.
    Jack, K.W.: The iron—nitrogen system: The crystal structures of ε-phase iron nitrides. Acta Crystallogr. 5, 404–411 (1952)CrossRefGoogle Scholar
  71. 71.
    Coey, J.M.D., O’Donnell, K., Qinian, Q., Touchais, E., Jack, K.H.: The magnetization of α “Fe16N2”. J. Phys. Condens. Matter. 6, L23–L28 (1994)ADSCrossRefGoogle Scholar
  72. 72.
    Kim, T.K., Takahashi, M.: New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492–494 (1972)ADSCrossRefGoogle Scholar
  73. 73.
    Takahashi, H., Igarashi, M., Kaneko, A., Miyajima, H., Sugita, Y.: Perpendicular uniaxial magnetic anisotropy of Fe16N2(001) single crystal films grown by molecular beam epitaxy. IEEE Trans. Magn. 35, 2982–2984 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    Al-Omari, I.A., Skomski, R., Thomas, R.A., Leslie-Pelecky, D., Sellmyer, D.J.: High-temperature magnetic properties of mechanically alloyed SmCo5 and YCo5 magnets. IEEE Trans. Magn. 37, 2534–2536 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    Buschow, K.H.J.: Differences in magnetic properties between amorphous and crystalline alloys. J. Appl. Phys. 53, 7713–7716 (1982)ADSCrossRefGoogle Scholar
  76. 76.
    Buschow, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123–1213 (1991)ADSCrossRefGoogle Scholar
  77. 77.
    Demczyk, B.G., Cheng, S.F.: Structures of Zr2Co11 and HfCo7 intermetallic compounds. J. Appl. Crystallogr. 24, 1023–1026 (1991)CrossRefGoogle Scholar
  78. 78.
    Ivanova, G.V., Shchegoleva, N.N., Gabay, A.M.: Crystal structure of Zr2Co11 hard magnetic compound. J. Alloys Comp. 432, 135–141 (2007)Google Scholar
  79. 79.
    Das, B., Balamurugan, B., Kumar, P., Skomski, R., Shah, V.T., Shield, J.E., Kashyap, A., Sellmyer, D.J.: HfCo7-based rare-earth-free permanent-magnet alloys. IEEE Trans. Magn. 49, 3330–3333 (2013)ADSCrossRefGoogle Scholar
  80. 80.
    Zhao, X., Nguyen, M. C., Zhang, W. Y., Wang, C. Z., Kramer, M. J., Sellmyer, D. J., Li, X. Z., Zhang, F., Ke, L. Q., Antropov, V. P., Ho, K. M.: Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. Phys. Rev. Lett. 112, 045502–1-5 (2014)Google Scholar
  81. 81.
    Zhao, X., Ke, L. Q., Nguyen, M. C., Wang, C.-Zh., Ho, K.-M.: Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations. J. Appl. Phys. 117, 243902–1-6 (2015)Google Scholar
  82. 82.
    Kumar, P., Kashyap, A., Balamurugan, B., Shield, J. E., Sellmyer, D. J., Skomski, R.: Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements. J. Phys. Condens. Matter. 26, 064209–1-8 (2014)Google Scholar
  83. 83.
    Das, B., Balamurugan, B., Zhang, W. Y., Skomski, R., Krage, E. S., Valloppilly, S. R., Shield, J. E., Sellmyer, D. J.: Magnetism of less common cobalt-rich alloys. Proc. REPM’12, Nagasaki, pp. 427–430 (2012)Google Scholar
  84. 84.
    Balamurugan, B., Das, B., Shah, V. R., Skomski, R., Li, X. Z., Sellmyer, D. J.: Assembly of uniaxially aligned rare-earth-free nanomagnets. Appl. Phys. Lett. 101, 122407–1-5 (2012)Google Scholar
  85. 85.
    Balamurugan, B., Das, B., Skomski, R., Zhang, W.-Y., Sellmyer, D.J.: Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv. Mater. 25, 6090–6093 (2013)CrossRefGoogle Scholar
  86. 86.
    Balamurugan, B., Mukherjee, P., Skomski, R., Manchanda, P., Das, B., Sellmyer, D. J.: Magnetic nanostructuring and overcoming Brown’s paradox to realize extraordinary high-temperature energy products. Sci. Rep. 4, 6265–1-6 (2014)Google Scholar
  87. 87.
    Balamurugan, B., Das, B., Zhang, W. -Y., Skomski, R., Sellmyer, D. J.: Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets. J. Phys. Condens. Matter 26, 064204–1-8 (2014)Google Scholar
  88. 88.
    Golkar, F., Kramer, M. J., Zhang, Y., McCallum, R. W., Skomski, R., Sellmyer, D. J., Shield, J. E.: Structure and magnetic properties of Co-W clusters produced by inert gas condensation. J. Appl. Phys. 111, 07B524-1-3 (2012)Google Scholar
  89. 89.
    Zhang, W.-Y., Li, X.Z., Valloppilly, S., Skomski, R., Sellmyer, D.J.: Effect of annealing on nanostructure and magnetic properties of Zr2Co11 material. Mater. Sci. Eng. B186, 64–67 (2014)CrossRefGoogle Scholar
  90. 90.
    Zhang W. -Y., et al.: in preparation (2015)Google Scholar
  91. 91.
    Sellmyer, D. J., Balamurugan, B., Das, B., Mukherjee, P., Skomski, R., Hadjipanayis, G. C.: Novel structures and physics of nanomagnets (invited). J. Appl. Phys. 117, 172609–1-6 (2015)Google Scholar
  92. 92.
    Balasubramanian, B., Skomski, R., Li, X.-Z., Valloppilly, S.R., Shield, J.E., Hadjipanayis, G.C., Sellmyer, D.J.: Cluster synthesis and direct ordering of rare-earth transition-metal nanomagnets. Nano Lett. 11, 1747–1752 (2011)ADSCrossRefGoogle Scholar
  93. 93.
    Balamurugan, B., Skomski, R., Li, X. Z., Shah, V. R., Hadjipanayis, G. C., Shield, J. E., Sellmyer, D. J.: Magnetism of cluster-deposited Y-Co nanoparticles. J. Appl. Phys. 109, 07A707-1-3 (2011)Google Scholar
  94. 94.
    Mukherjee, P., Manchanda, P., Kumar, P., Zhou, L., Kramer, M.J., Kashyap, A., Skomski, R., Sellmyer, D.J., Shield, J.E.: Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles. ACS Nano 8, 8113–8120 (2014)CrossRefGoogle Scholar
  95. 95.
    Harris, V. G., Chen, Y., Yang, A., Yoon, S., Chen, Z., Geiler, A. L., Gao, J., Chinnasam, C. N., Lewis, L. H., Vittoria, C., Carpenter, E. E., Carroll, K. J., Goswami, R., Willard, M. A., Kurihara, L., Gjoka, M., Kalogirou, O.: High coercivity cobalt carbide nanoparticles processed via polyol reaction: a new permanent magnet material. J. Phys. D. Appl. Phys. 43, 165003–1-7 (2010)Google Scholar
  96. 96.
    Gandha, K., Elkins, K., Poudyal, N., Liu, X., Liu, J. P.: High energy product developed from cobalt nanowires. Sci. Rep. 4, 5345–1-5 (2014)Google Scholar
  97. 97.
    Skomski, R.: Phase formation in L10 magnets. J. Appl. Phys. 101, 09N517-1-3 (2007)Google Scholar
  98. 98.
    McHenry, M.E., Ramalingum, B., Willoughby, S., MacLaren, J., Sankar, S.G.: First principles calculations of the electronic structure of Fe1-xCoxPt. IEEE Trans. Magn. 37, 1277–1279 (2001)ADSCrossRefGoogle Scholar
  99. 99.
    Manchanda, P., Skomski, R., Shield, J. E., Constantinides, S., Kashyap, A.: Intrinsic magnetic properties of L10-based Mn-Al and Fe-Co-Pt Alloys. Proc. REPM’12, pp. 115–118 (2012)Google Scholar
  100. 100.
    Brown, G., Kraczek, B., Janotti, A., Schulthess, T. C., Stocks, G. M., Johnson, D. D.: Competition between ferromagnetism and antiferromagnetism in FePt. Phys. Rev. B. 68, 052405–1-4 (2003)Google Scholar
  101. 101.
    Skomski, R., Kashyap, A., Zhou, J.: Atomic and micromagnetic aspects of L10 magnetism. Scr. Mater. 53, 391–396 (2005)CrossRefGoogle Scholar
  102. 102.
    Cheng Lai, Y., Chang, Y.H., Chen, G.-J., Chiu, K.-F., Chen, Y.-C.: Abnormal enhancement of ordered phase in sputter-deposited (Fe1-xCox)59Pt41 thin films. Mater. Trans. 47, 2086–2091 (2006)CrossRefGoogle Scholar
  103. 103.
    Choudhary, R., Kumar, P., Manchanda, P., Liu, Y., Kashyap, A., Sellmyer, D. J., Skomski, R.: Atomic magnetic properties of Pt-Lean FePt and CoPt derivatives. Proc. REPM'14, Annapolis, p. 289–291 (2014)Google Scholar
  104. 104.
    Kono, H.: On the ferromagnetic phase in Mn-Al System. J. Phys. Soc. Jpn. 13, 1444–1451 (1958)ADSCrossRefGoogle Scholar
  105. 105.
    Jiménez-Villacorta, F., Marion, J. L., Sepehrifar, T., Daniil, M., Willard, M. A., Lewis, L. H.: Exchange anisotropy in the nanostructured MnAl system. Appl. Phys. Lett. 100, 112408–1-4 (2012)Google Scholar
  106. 106.
    Chaturvedi, A., Yaqub, R., Baker, I.: A comparison of τ-MnAl particulates produced via different routes. J. Phys. Condens. Matter. 26, 064201–1-7 (2014)Google Scholar
  107. 107.
    Pasko, A., LoBue, M., Fazakas, E., Varga, L. K., Mazaleyrat, F.: Spark plasma sintering of Mn-Al-C hard magnets. J. Phys. Condens. Matter 26, 064203–1-7 (2014)Google Scholar
  108. 108.
    Manchanda, P., Kumar, P., Kashyap, A., Lucis, M.J., Shield, J.E., Mubarok, A., Goldstein, J., Constantinides, S., Barmak, K., Lewis, L.-H., Sellmyer, D.J., Skomski, R.: Intrinsic properties of Fe-substituted L10 magnets. IEEE Trans. Magn. 49(10), 5194–5198 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    Lewis, L. H., Barmak, K., Goldstein, J. G., Pinkerton, F., Skomski, R.: Towards stabilization of L10-type FeNi compounds for permanent magnet applications. Proc. REPM’12, Nagasaki, p. 102–105 (2012)Google Scholar
  110. 110.
    Lewis, L. H., Mubarok, A., Poirier, E., Bordeaux, N., Manchanda, P., Kashyap, A., Skomski, R., Goldstein, J., Pinkerton, F. E., Mishra, R. K., Kubic R. C., Jr., Barmak, K.: Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys. Condens. Matter 26, 064213–1-10 (2014)Google Scholar
  111. 111.
    Lewis, L. H., Pinkerton, F. E., Bordeaux, N., Mubarok, A., Poirier, E., Goldstein, J. I., Skomski, R. Barmak, K.: De magnete et meteorite: Cosmically motivated materials. IEEE Magn. Lett. 5, 5500104–1-4 (2014)Google Scholar
  112. 112.
    Coey, J.M.: Magnetism and Magnetic Materials. University Press, Cambridge (2010)CrossRefGoogle Scholar
  113. 113.
    Coey, J. M. D.: New permanent magnets; manganese compounds. J. Phys. Condens. Matter 26, 064211–1-6 (2014)Google Scholar
  114. 114.
    Heusler, F.: Über manganbronze und über die synthese magnetisierbarer legierungen aus unmagnetischen metallen. Z. Angew. Chem. 17, 260–264 (1904)CrossRefGoogle Scholar
  115. 115.
    Goodenough, J.B.: Magnetism and the Chemical Bond. Wiley, New York (1963)Google Scholar
  116. 116.
    Kharel, P., Skomski, R., Lukashev, P., Sabirianov, R., Sellmyer, D. J.: Spin correlations and Kondo effect in a strong ferromagnet. Phys. Rev. B. 84, 014431–1-5 (2011)Google Scholar
  117. 117.
    Kang, K., Lewis, L. H., Moodenbaugh, A. R.: Alignment and analyses of MnBi/Bi nanostructures. Appl. Phys. Lett. 87, 062505–1-3 (2005)Google Scholar
  118. 118.
    Cui, J., Choi, J. P., Li, G., Polikarpov, E., Darsell, J., Overman, N., Olszta, M., Schreiber, D., Bowden, M., Droubay, T., Kramer, M. J., Zarkevich, N. A., Wang, L. L., Johnson, D. D., Marinescu, M., Takeuchi, I., Huang, Q. Z., Wu, H., Reeve, H., Vuong, N. V., Liu, J. P.: Thermal stability of MnBi magnetic materials. J. Phys. Condens. Matter 26, 064212–1-10 (2014)Google Scholar
  119. 119.
    Skomski, R., Manchanda, P., Takeuchi, I., Cui, J.: Geometry dependence of magnetization reversal in nanocomposite alloys. J. Metals. 66, 1144–1150 (2014)Google Scholar
  120. 120.
    Heusler, F.: Über magnetische manganlegierungen. Verhandl. Deut. Physik. Ges. 5, 219–223 (1903)Google Scholar
  121. 121.
    Kharel, P., Huh, Y., Al-Aqtash, N., Shah, V. R., Sabirianov, R. F., Skomski, R., Sellmyer, D. J.: Structural and magnetic transitions in cubic Mn3Ga. J. Phys. Condens. Matter 26, 126001–1-8 (2014)Google Scholar
  122. 122.
    Liu, J.P., Skomski, R., Liu, Y., Sellmyer, D.J.: Temperature dependence of magnetic hysteresis of RCox:Co nanocomposites (R = Pr and Sm). J. Appl. Phys. 87, 6740–6742 (2000)ADSCrossRefGoogle Scholar
  123. 123.
    Lyubina, J., Müller, K.-H., Wolf, M., Hannemann, U.: A two-particle exchange interaction model. J. Magn. Magn. Mater. 322, 2948–2955 (2010)ADSCrossRefGoogle Scholar
  124. 124.
    Skomski, R., Liu, J.-P., Sellmyer, D.J.: Quasicoherent nucleation mode in two-phase nanomagnets. Phys. Rev. B 60, 7359–7365 (1999)ADSCrossRefGoogle Scholar
  125. 125.
    Aharoni, A.: Introduction to the Theory of Ferromagnetism. University Press, Oxford (1996)Google Scholar
  126. 126.
    Skomski, R.: Micromagnetic localization. J. Appl. Phys. 83, 6503–6505 (1998)ADSCrossRefGoogle Scholar
  127. 127.
    Skomski, R., Coey, J.M.D.: Exchange coupling and energy product in random two-phase aligned magnets. IEEE Trans. Magn. 30(2), 607–609 (1994)ADSCrossRefGoogle Scholar
  128. 128.
    Schrefl, T., Fidler, J.: Micromagnetic simulation of magnetizability of nanocomposite Nd–Fe–B magnets. J. Appl. Phys. 83, 6262–6264 (1998)ADSCrossRefGoogle Scholar
  129. 129.
    Szlaferek, A.: Model exchange-spring nanocomposite magnetic grains. Phys. Stat. Sol. B. 241, 1312–1315 (2004)ADSCrossRefGoogle Scholar
  130. 130.
    Skomski, R.: Optimum hard-soft geometries: science, wishful thinking, and technology. (invited). Proc. REPM'14, Annapolis, p. 129–132 (2014)Google Scholar
  131. 131.
    Skomski, R., Hadjipanayis, G. C., Sellmyer, D. J.: Graded permanent magnets. J. Appl. Phys. 105, 07A733-1-3 (2009)Google Scholar
  132. 132.
    Becker, R., Döring, W.: Ferromagnetismus. Springer, Berlin (1939)CrossRefGoogle Scholar
  133. 133.
    Skomski, R., Kumar, P., Hadjipanayis, G.C., Sellmyer, D.J.: Finite-temperature micromagnetism. IEEE Trans. Magn. 49(7), 3229–3232 (2013)ADSCrossRefGoogle Scholar
  134. 134.
    Néel, L.: Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5, 99–136 (1949)Google Scholar
  135. 135.
    Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)ADSCrossRefGoogle Scholar
  136. 136.
    Street, R., Woolley, J.C.: A study of magnetic viscosity. Proc. Phys. Soc. A 62, 562–572 (1949)ADSCrossRefGoogle Scholar
  137. 137.
    Kneller, E.: Theorie der magnetisierungskurve kleiner kristalle. In: Wijn, H.P.J. (ed.) Handbuch der Physik XIII/2: Ferromagnetismus, pp. 438–544. Springer, Berlin (1966)Google Scholar
  138. 138.
    Sharrock, M.P.: Time dependence of switching fields in magnetic recording media. J. Appl. Phys. 76, 6413–6418 (1994)ADSCrossRefGoogle Scholar
  139. 139.
    Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  140. 140.
    Skomski, R., Kirby, R.D., Sellmyer, D.J.: Activation entropy, activation energy, and magnetic viscosity. J. Appl. Phys. 85, 5069–5071 (1999)ADSCrossRefGoogle Scholar
  141. 141.
    Dittrich, R., Schrefl, T., Kirschner, M., Suess, D., Hrkac, G., Dorfbauer, F., Ertl, O., Fidler, J.: Thermally induced vortex nucleation in permalloy elements. IEEE Trans. Magn. 41(10), 3592–3594 (2005)ADSCrossRefGoogle Scholar
  142. 142.
    Skomski, R.: Role of thermodynamic fluctuations in magnetic recording (invited). J. Appl. Phys. 101, 09B104-1-6 (2007)Google Scholar
  143. 143.
    Egami, T.: Theory of intrinsic magnetic after-effect i. thermally activated process. Phys. Stat. Sol. A. 19, 747–758 (1973)Google Scholar
  144. 144.
    Braun, H.-B.: Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012)ADSCrossRefGoogle Scholar
  145. 145.
    Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    Shen, J., Skomski, R., Klaua, M., Jenniches, H., Manoharan, S.S., Kirschner, J.: Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B 56, 2340–2343 (1997)ADSCrossRefGoogle Scholar
  147. 147.
    This procedure works in one dimension only, because the τi cannot be defined unambiguously in two and three dimensionsGoogle Scholar
  148. 148.
    Cui, B. Z., Gabay, A. M., Li, W. F., Marinescu, M., Liu, J. F., Hadjipanayis, G. C.: Anisotropic SmCo5 nanoflakes by surfactant-assisted high energy ball milling. J. Appl. Phys. 107, 09A721-1-3 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and Nebraska Center for Materials and NanoscienceUniversity of NebraskaLincolnUSA

Personalised recommendations