Tuneable Metacomposites Based on Functional Fillers

  • Yang Luo
  • Faxiang QinEmail author
  • Fabrizio Scarpa
  • Mihail Ipatov
  • Arcady Zhukov
  • Hua-Xin PengEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)


Metamaterials, traditionally in the form of artificial structures with surprising electromagnetic properties, have triggered unprecedented opportunities to achieve those fascinating applications that previously only exist in science-fiction works, for example, Harry Potter’s cloak. Nevertheless, their massive manufacturing costs incurred by their complicated structures restrict the scale-up and mass production. The ultimate properties are primarily (if not solely) determined by the intrinsic structures of metamaterials that make them merely ‘meta-structures’. In response to these issues, it is desirable to have a genuine engineering composite yet with metamaterial characteristics. Thus, ‘metacomposite’ has been proposed to account for a real piece of composite material. This has subsequently become a nascent area where metamaterial properties are attained under wider operating frequencies with certain tunability towards external magnetic fields or mechanical stresses. In this chapter, we start with an overview of metacomposites containing various dielectric and/or magnetic fillers following the fillers’ dimensions from 0D, 1D to 2D. We then critically discussed some progresses in metacomposites containing ferromagnetic microwires together with unparalleled advantages in microwave sensing and cloaking areas. Finally, the chapter is closed with an outlook of strategies for improving existing metacomposites and some future perspectives.


Metamaterials Double negative Single negative Effective permittivity Effective permeability Negative permittivity Wire medium Negative permeability Ferromagnetic resonance Metacomposites SNG metacomposites Carbon nanotubes Carbon nanofibres Grapheme DNG metacomposites Ferromagnetic microwires Giant magnetoimpedance effect Soft magnetic properties Microwave properties Operating frequencies Transmission window Effective diameter Plasma frequency Microwave absorption Dipole resonance Magnetic interaction resonance Field-tunable window Dual band Double negative/bandstop 3D metacomposites 3D printing CCMA 


  1. 1.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Raether, H.: Excitations of Plasmons and Interband Transitions by Electrons. Springer, Berlin (1980)Google Scholar
  4. 4.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear. IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Bückmann, T., Thiel, M., Kadic, M., Schittny, R., Wegener, M.: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014)CrossRefGoogle Scholar
  8. 8.
    Pendry, J.B., Aubry, A., Smith, D.R., Maier, S.A.: Transformation optics and subwavelength control of light. Science 337, 549 (2012)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332, 1291 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Smith, D.R., Pendry, J.B., Wiltshire, M.K.: Metamaterials and negative refractive index. Science 305, 788 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Duan, Z., Wu, B.I., Xi, S., Chen, H., Chen, M.: Research progress in reversed Cherenkov radiation in double-negative metamaterials. Prog. Electromagn. Res. 90, 75 (2009)CrossRefGoogle Scholar
  13. 13.
    Lee, S.H., Park, C.M., Seo, Y.M., Kim, C.K.: Reversed Doppler effect in double negative metamaterials. Phys. Rev. B 81, 241102 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Cui, T.J., Smith, D.R., Liu, R.P.: Metamaterials. Springer, Berlin (2014)Google Scholar
  15. 15.
    Florijn, B., Coulais, C., Hecke, M.: Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Stenger, N., Wilhelm, M., Wegener, M.: Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Chaturvedi, P., Hsu, K., Zhang, S., Fang, N.: New frontiers of metamaterials: design and fabrication. MRS Bull. 33, 915 (2008)CrossRefGoogle Scholar
  18. 18.
    Li, J., Fok, L., Yin, X., Bartal, G., Zhang, X.: Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Hawkes, A.M., Katko, A.R., Cummer, S.A.: A microwave metamaterial with integrated power harvesting functionality. Appl. Phys. Lett. 103, 163901 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Landy, N., Smith, D.R.: A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 12, 25 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1, 41 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Boltasseva, A., Shalaev, V.M.: Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2, 1 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Sodha, M.S., Srivastava, N.C.: Microwave propagation in ferrimagnetics. Springer, Berlin (1981)CrossRefGoogle Scholar
  26. 26.
    Kelly, A.: Composites in context. Compos. Sci. Technol. 23, 171 (1985)CrossRefGoogle Scholar
  27. 27.
    Jackson, J.D., Jackson, J.D.: Classical electrodynamics. Wiley, New York (1962)zbMATHGoogle Scholar
  28. 28.
    Pines, D., Bohm, D.: A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338 (1952)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Bohm, D., Pines, D.: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41, 1345 (2010)CrossRefGoogle Scholar
  31. 31.
    Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486 (2009)CrossRefGoogle Scholar
  32. 32.
    Liberal, I., Nefedov, I.S., Ederra, I., Gonzalo, R., Tretyakov, S.A.: Electromagnetic response and homogenization of grids of ferromagnetic microwires. J. Appl. Phys. 110, 064909 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Landau, L.D., Bell, J.S., Kearsley, M.J., Pitaevskii, L.P., Lifshitz, E.M., Sykes, J.B.: Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, New York (1984)Google Scholar
  34. 34.
    Velez, A., Aznar, F., Bonache, J., Velazquez-Ahumada, M.C., Martel, J., Martin, F.: Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microwave Wireless Compon. Lett. 19, 197 (2009)CrossRefGoogle Scholar
  35. 35.
    Bonache, J., Gil, I., Garcia-Garcia, J., Martin, F.: Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microwave Theory Tech. 54, 265 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Azad, A.K., Dai, J., Zhang, W.: Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 31, 634 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Marqués, R., Martín, F., Sorolla, M.: Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. Wiley-Interscience, Hoboken, NJ (2007)CrossRefGoogle Scholar
  38. 38.
    Chui, S.T., Hu, L.: Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys. Rev. B 65, 144407 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Pimenov, A., Loidl, A., Przyslupski, P., Dabrowski, B.: Negative refraction in ferromagnet-superconductor superlattices. Phys. Rev. Lett. 95, 247009 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Liberal, I., Nefedov, I.S., Ederra, I., Gonzalo, R., Tretyakov, S.A.: On the effective permittivity of arrays of ferromagnetic wires. J. Appl. Phys. 110, 104902 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Carbonell, J., García-Miquel, H., Sánchez-Dehesa, J.: Double negative metamaterials based on ferromagnetic microwires. Phys. Rev. B 81, 024401 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Chen, H.T., Padilla, W.J., Averitt, R.D., Gossard, A.C., Highstrete, C., Lee, M., O’Hara, J.F., Taylor, A.J.: Electromagnetic metamaterials for terahertz applications. Terahertz Sci. Technol. 1, 42 (2008)Google Scholar
  43. 43.
    Kafesaki, M., Tsiapa, I., Katsarakis, N., Koschny, T., Soukoulis, C.M., Economou, E.N.: Left-handed metamaterials: The fishnet structure and its variations. Phys. Rev. B 75, 235114 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V.: Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., Soukoulis, C.M.: Magnetic response of metamaterials at 100 terahertz. Science 306, 1351 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Chanda, D., Shigeta, K., Gupta, S., Cain, T., Carlson, A., Mihi, A., Baca, A.J., Bogart, G.R., Braun, P., Rogers, J.A.: Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 6, 402 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Thostenson, E.T., Li, C., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491 (2005)CrossRefGoogle Scholar
  49. 49.
    Zhang, D., Wang, P., Murakami, R., Song, X.: Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films. Appl. Phys. Lett. 96, 233114 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Wheeler, M.S., Aitchison, J.S., Mojahedi, M.: Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies. Phys. Rev. B 72, 193103 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Zhao, Q., Du, B., Kang, L., Zhao, H., Xie, Q., Li, B., Zhang, X., Zhou, J., Li, L., Meng, Y.: Tunable negative permeability in an isotropic dielectric composite. Appl. Phys. Lett. 92, 051106 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    O’Brien, S., Pendry, J.B.: Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condensed Matter 14, 4035 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Mavinakuli, P., Karki, A.B., Young, D.P., Guo, Z.: Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J. Phys. Chem. C 114, 16335 (2010)CrossRefGoogle Scholar
  54. 54.
    Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Karki, A.B., Young, D.P., Guo, Z.: Polyaniline-tungsten oxide metacomposites with tunable electronic properties. J. Mater. Chem. 21, 342 (2011)CrossRefGoogle Scholar
  55. 55.
    Gu, H., Guo, J., Wei, S., Guo, Z.: Polyaniline nanocomposites with negative permittivity. J. Appl. Polym. Sci. 130, 2238 (2013)CrossRefGoogle Scholar
  56. 56.
    Gu, H., Guo, J., He, Q., Jiang, Y., Huang, Y., Haldolaarachige, N., Luo, Z., Young, D.P., Wei, S., Guo, Z.: Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6, 181 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    Liu, C.D., Lee, S.N., Ho, C.H., Han, J.L., Hsieh, K.H.: Electrical properties of well-dispersed nanopolyaniline/epoxy hybrids prepared using an absorption-transferring process. J. Phys. Chem. C 112, 15956 (2008)CrossRefGoogle Scholar
  58. 58.
    Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899 (2001)CrossRefGoogle Scholar
  59. 59.
    Breuer, O., Sundararaj, U.: Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 25, 630 (2004)CrossRefGoogle Scholar
  60. 60.
    Li, B., Sui, G., Zhong, W.H.: Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176 (2009)CrossRefGoogle Scholar
  61. 61.
    Zhu, J., Wei, S., Ryu, J., Guo, Z.: Strain-sensing elastomer/carbon nanofiber “metacomposites”. J. Phys. Chem. C 115, 13215 (2011)CrossRefGoogle Scholar
  62. 62.
    Zhu, J., Gu, H., Luo, Z., Haldolaarachige, N., Young, D.P., Wei, S., Guo, Z.: Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir 28, 10246 (2012)CrossRefGoogle Scholar
  63. 63.
    Zhu, J., Zhang, X., Haldolaarachchige, N., Wang, Q., Luo, Z., Ryu, J., Young, D.P., Wei, S., Guo, Z.: Polypyrrole metacomposites with different carbon nanostructures. J. Mater. Chem. 22, 4996 (2012)CrossRefGoogle Scholar
  64. 64.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Zhu, J., Luo, Z., Wu, S., Haldolaarachchige, N., Young, D.P., Wei, S., Guo, Z.: Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J. Mater. Chem. 22, 835 (2012)CrossRefGoogle Scholar
  67. 67.
    Holloway, C.L., Kuester, E.F., Baker-Jarvis, J., Kabos, P.: A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Vendik, O.G., Gashinova, M.S.: Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix. In Proceedings of the 34th European Microwave Conference, Amsterdam, vol. 3, pp. 1209–1212. IEEE Press, Piscataway, NJ (2004).
  69. 69.
    Huang, K.C., Povinelli, M.L., Joannopoulos, J.D.: Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett. 85, 543 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    Zhao, Q., Kang, L., Du, B., Zhao, H., Xie, Q., Huang, X., Li, B., Zhou, J., Li, L.: Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    Bush, G.G.: The complex permeability of a high purity yttrium iron garnet (YIG) sputtered thin film. J. Appl. Phys. 73, 6310 (1993)ADSCrossRefGoogle Scholar
  72. 72.
    Bush, G.G.: Functional dependence of the real part of the initial permeability of the YIG family of ferrites. J. Appl. Phys. 67, 5515 (1990)ADSCrossRefGoogle Scholar
  73. 73.
    He, Y., He, P., Yoon, S.D., Parimi, P.V., Rachford, F.J., Harris, V.G., Vittoria, C.: Tunable negative index metamaterial using yttrium iron garnet. J. Magn. Magn. Mater. 313, 187 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Tsutaoka, T., Kasagi, T., Hatakeyama, K.: Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field. J. Appl. Phys. 110, 053909 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    Kasagi, T., Tsutaoka, T., Hatakeyama, K.: Negative permeability spectra in Permalloy granular composite materials. Appl. Phys. Lett. 88, 172502 (2006)ADSCrossRefGoogle Scholar
  76. 76.
    Xu, F., Bai, Y., Qiao, L., Zhao, H., Zhou, J.: Realization of negative permittivity of Co2Z hexagonal ferrite and left-handed property of ferrite composite material. J. Phys. D 42, 025403 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Shi, Z.C., Fan, R.H., Zhang, Z.D., Qian, L., Gao, M., Zhang, M., Zheng, L.T., Zhang, X.H., Yin, L.W.: Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Mater. 24, 2349 (2012)CrossRefGoogle Scholar
  78. 78.
    Gao, M., Shi, Z.C., Fan, R.H., Qian, L., Zhang, Z.D., Guo, J.Y.: High‐frequency negative permittivity from Fe/Al2O3 composites with high metal contents. J. Am. Ceram. Soc. 95, 67 (2012)CrossRefGoogle Scholar
  79. 79.
    Shi, Z.C., Fan, R.H., Zhang, Z.D., Gong, H.Y., Ouyang, J., Bai, Y.J., Zhang, X.H., Yin, L.W.: Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 032903 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    Phan, M.H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323 (2008)CrossRefGoogle Scholar
  81. 81.
    Qin, F.X., Bingham, N.S., Wang, H., Peng, H.X., Sun, J.F., Franco, V., Yu, S.C., Srikanth, H., Phan, M.H.: Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction. Acta Mater. 61, 1284 (2013)CrossRefGoogle Scholar
  82. 82.
    García-Miquel, H., Carbonell, J., Boria, V.E., Sánchez-Dehesa, J.: Experimental evidence of left handed transmission through arrays of ferromagnetic microwires. Appl. Phys. Lett. 94, 054103 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    Qin, F., Peng, H.X.: Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183 (2013)CrossRefGoogle Scholar
  84. 84.
    Qin, F.X., Pankratov, N., Peng, H.X., Phan, M.H., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. J. Appl. Phys. 107, 09A314 (2010)Google Scholar
  85. 85.
    Qin, F.X., Peng, H.X., Chen, Z., Wang, H., Zhang, J.W., Hilton, G.: Optimization of microwire/glass-fibre reinforced polymer composites for wind turbine application. Appl. Phys. A 113, 537 (2013)ADSCrossRefGoogle Scholar
  86. 86.
    Luo, Y., Peng, H.X., Qin, F.X., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays. J. Appl. Phys. 115, 173909 (2014)ADSCrossRefGoogle Scholar
  87. 87.
    Peng, H.X., Qin, F.X., Phan, M.H., Tang, J., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Co-based magnetic microwire and field-tunable multifunctional macro-composites. J. Non-Crystal. Solids 355, 1380 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    Makhnovskiy, D., Zhukov, A., Zhukova, V., Gonzalez, J.: Tunable and self-sensing microwave composite materials incorporating ferromagnetic microwires. Adv. Sci. Technol. 54, 201 (2009)CrossRefGoogle Scholar
  89. 89.
    Luo, Y., Peng, H.X., Qin, F.X., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Fe-based ferromagnetic microwires enabled meta-composites. Appl. Phys. Lett. 103, 251902 (2013)ADSCrossRefGoogle Scholar
  90. 90.
    Baranov, S., Yamaguchi, M., Garcia, K., Vazquez, M.: Application of amorphous microwires for electromagnetic shielding. Moldavian J. Phys. Sci. 9, 76 (2010)Google Scholar
  91. 91.
    Qin, F.X., Quéré, Y., Brosseau, C., Wang, H., Liu, J.S., Sun, J.F., Peng, H.X.: Two-peak feature of the permittivity spectra of ferromagnetic microwire/rubber composites. Appl. Phys. Lett. 102, 122903 (2013)ADSCrossRefGoogle Scholar
  92. 92.
    Kittel, C.: On the theory of ferromagnetic resonance. Phys. Rev. 73, 155 (1948)ADSCrossRefGoogle Scholar
  93. 93.
    Wang, H., Xing, D., Wang, X., Sun, J.: Fabrication and characterization of melt-extracted co-based amorphous wires. Metall. Mater. Trans. A 42, 1103 (2011)CrossRefGoogle Scholar
  94. 94.
    Wang, H., Qin, F.X., Xing, D.W., Cao, F.Y., Peng, H.X., Sun, J.F.: Fabrication and characterization of nano/amorphous dual-phase FINEMET microwires. Mater. Sci. Eng. B 178, 1483 (2013)CrossRefGoogle Scholar
  95. 95.
    Sukstanskii, A.L., Korenivski, V.: Impedance and surface impedance of ferromagnetic multilayers: the role of exchange interaction. J. Phys. D 34, 3337 (2001)ADSCrossRefGoogle Scholar
  96. 96.
    Liu, L., Kong, L.B., Lin, G.Q., Matitsine, S., Deng, C.R.: Microwave permeability of ferromagnetic microwires composites/metamaterials and potential applications. IEEE Trans. Magn. 44, 3119 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    Kraus, L., Frait, Z., Ababei, G., Chiriac, H.: Ferromagnetic resonance of transversally magnetized amorphous microwires and nanowires. J. Appl. Phys. 113, 183907 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    Vázquez, M., Adenot-Engelvin, A.L.: Glass-coated amorphous ferromagnetic microwires at microwave frequencies. J. Magn. Magn. Mater. 321, 2066 (2009)ADSCrossRefGoogle Scholar
  99. 99.
    Wang, H., Qin, F.X., Xing, D.W., Cao, F.Y., Wang, X.D., Peng, H.X., Sun, J.F.: Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires. Acta Mater. 60, 5425 (2012)CrossRefGoogle Scholar
  100. 100.
    Qin, F.X., Peng, H.X., Fuller, J., Brosseau, C.: Magnetic field-dependent effective microwave properties of microwire-epoxy composites. Appl. Phys. Lett. 101, 152905 (2012)ADSCrossRefGoogle Scholar
  101. 101.
    Luo, Y., Peng, H.X., Qin, F.X., Adohi, B.J.P., Brosseau, C.: Magnetic field and mechanical stress tunable microwave properties of composites containing Fe-based microwires. Appl. Phys. Lett. 104, 121912 (2014)ADSCrossRefGoogle Scholar
  102. 102.
    Luo, Y., Qin, F.X., Scarpa, F., Carbonel J., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Peng, H.X.: Hybridized magnetic microwire metacomposites towards microwave cloaking and barcoding applications. arXiv preprint arXiv:1506.07745 (2015).Google Scholar
  103. 103.
    Qin, F.X., Peng, H.X., Pankratov, N., Phan, M.H., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. J. Appl. Phys. 108, 044510 (2010)ADSCrossRefGoogle Scholar
  104. 104.
    Makhnovskiy, D.P., Panina, L.V., Garcia, C., Zhukov, A.P., Gonzalez, J.: Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory. Phys. Rev. B 74, 064205 (2006)ADSCrossRefGoogle Scholar
  105. 105.
    McVay, J., Hoorfar, A., Engheta, N.: Space-filling curve RFID tags. In Proceedings of IEEE Radio Wireless Symposium, pp. 199–202. IEEE, San Diego, CA (2006). Scholar
  106. 106.
    Jalaly, I., Robertson, D.: Capacitively-tuned split microstrip resonators for RFID barcodes. In Proceedings of European Microwave Conference, vol. 2, pp. 4–7. IEEE, Paris, France (2005). Scholar
  107. 107.
    Thostenson, E.T., Chou, T.W.: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44, 3022 (2006)CrossRefGoogle Scholar
  108. 108.
    Jung, G.Y., Johnston-Halperin, E., Wu, W., Yu, Z., Wang, S.Y., Tong, W.M., Li, Z., Green, J.E., Sheriff, B.A., Boukai, A.: Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett. 6, 351 (2006)ADSCrossRefGoogle Scholar
  109. 109.
    Hsu, K.H., Schultz, P.L., Ferreira, P.M., Fang, N.X.: Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett. 7, 446 (2007)ADSCrossRefGoogle Scholar
  110. 110.
    Nagpal, P., Lindquist, N.C., Oh, S.H., Norris, D.J.: Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594 (2009)ADSCrossRefGoogle Scholar
  111. 111.
    Vignolini, S., Yufa, N.A., Cunha, P.S., Guldin, S., Rushkin, I., Stefik, M., Hur, K., Wiesner, U., Baumberg, J.J., Steiner, U.: A 3D optical metamaterial made by self‐assembly. Adv. Mater. 24, OP23 (2012)CrossRefGoogle Scholar
  112. 112.
    Taboas, J.M., Maddox, R.D., Krebsbach, P.H., Hollister, S.J.: Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24, 181 (2003)CrossRefGoogle Scholar
  113. 113.
    Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518 (2005)ADSCrossRefGoogle Scholar
  114. 114.
    Liu, J., Qin, F., Chen, D., Shen, H., Wang, H., Xing, D., Phan, M.H., Sun, J.: Combined current-modulation annealing induced enhancement of giant magnetoimpedance effect of Co-rich amorphous microwires. J. Appl. Phys. 115, 17A326 (2014)CrossRefGoogle Scholar
  115. 115.
    Ma, H.F., Cui, T.J.: Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010)ADSGoogle Scholar
  116. 116.
    Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523 (2011)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Advanced Composites Centre for Innovation and Science, Department of Aerospace EngineeringUniversity of BristolBristolUK
  2. 2.Institute for Composites Science Innovation (InCSI), School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Dpto. de Fisica de Materiales, Fac. QuimicasUniversidad del Pais VascoSan SebastianSpain
  4. 4.UPV/EHU, Basque Country UniversitySan SebastianSpain

Personalised recommendations