Skip to main content

Tuneable Metacomposites Based on Functional Fillers

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 231))

Abstract

Metamaterials, traditionally in the form of artificial structures with surprising electromagnetic properties, have triggered unprecedented opportunities to achieve those fascinating applications that previously only exist in science-fiction works, for example, Harry Potter’s cloak. Nevertheless, their massive manufacturing costs incurred by their complicated structures restrict the scale-up and mass production. The ultimate properties are primarily (if not solely) determined by the intrinsic structures of metamaterials that make them merely ‘meta-structures’. In response to these issues, it is desirable to have a genuine engineering composite yet with metamaterial characteristics. Thus, ‘metacomposite’ has been proposed to account for a real piece of composite material. This has subsequently become a nascent area where metamaterial properties are attained under wider operating frequencies with certain tunability towards external magnetic fields or mechanical stresses. In this chapter, we start with an overview of metacomposites containing various dielectric and/or magnetic fillers following the fillers’ dimensions from 0D, 1D to 2D. We then critically discussed some progresses in metacomposites containing ferromagnetic microwires together with unparalleled advantages in microwave sensing and cloaking areas. Finally, the chapter is closed with an outlook of strategies for improving existing metacomposites and some future perspectives.

The original version of the book was revised because Arcady Zhukov’s name was misspelled. An erratum explaining this can be found at DOI 10.1007/978-3-319-26106-5_11

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  3. Raether, H.: Excitations of Plasmons and Interband Transitions by Electrons. Springer, Berlin (1980)

    Google Scholar 

  4. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear. IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  5. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  6. Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)

    Article  ADS  Google Scholar 

  7. Bückmann, T., Thiel, M., Kadic, M., Schittny, R., Wegener, M.: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014)

    Article  Google Scholar 

  8. Pendry, J.B., Aubry, A., Smith, D.R., Maier, S.A.: Transformation optics and subwavelength control of light. Science 337, 549 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  10. Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2 (2007)

    Article  ADS  Google Scholar 

  11. Smith, D.R., Pendry, J.B., Wiltshire, M.K.: Metamaterials and negative refractive index. Science 305, 788 (2004)

    Article  ADS  Google Scholar 

  12. Duan, Z., Wu, B.I., Xi, S., Chen, H., Chen, M.: Research progress in reversed Cherenkov radiation in double-negative metamaterials. Prog. Electromagn. Res. 90, 75 (2009)

    Article  Google Scholar 

  13. Lee, S.H., Park, C.M., Seo, Y.M., Kim, C.K.: Reversed Doppler effect in double negative metamaterials. Phys. Rev. B 81, 241102 (2010)

    Article  ADS  Google Scholar 

  14. Cui, T.J., Smith, D.R., Liu, R.P.: Metamaterials. Springer, Berlin (2014)

    Google Scholar 

  15. Florijn, B., Coulais, C., Hecke, M.: Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014)

    Article  ADS  Google Scholar 

  16. Stenger, N., Wilhelm, M., Wegener, M.: Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012)

    Article  ADS  Google Scholar 

  17. Chaturvedi, P., Hsu, K., Zhang, S., Fang, N.: New frontiers of metamaterials: design and fabrication. MRS Bull. 33, 915 (2008)

    Article  Google Scholar 

  18. Li, J., Fok, L., Yin, X., Bartal, G., Zhang, X.: Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931 (2009)

    Article  ADS  Google Scholar 

  19. Hawkes, A.M., Katko, A.R., Cummer, S.A.: A microwave metamaterial with integrated power harvesting functionality. Appl. Phys. Lett. 103, 163901 (2013)

    Article  ADS  Google Scholar 

  20. Landy, N., Smith, D.R.: A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 12, 25 (2013)

    Article  ADS  Google Scholar 

  21. Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X.: Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376 (2008)

    Article  ADS  Google Scholar 

  22. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  23. Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics 1, 41 (2007)

    Article  ADS  Google Scholar 

  24. Boltasseva, A., Shalaev, V.M.: Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2, 1 (2008)

    Article  ADS  Google Scholar 

  25. Sodha, M.S., Srivastava, N.C.: Microwave propagation in ferrimagnetics. Springer, Berlin (1981)

    Book  Google Scholar 

  26. Kelly, A.: Composites in context. Compos. Sci. Technol. 23, 171 (1985)

    Article  Google Scholar 

  27. Jackson, J.D., Jackson, J.D.: Classical electrodynamics. Wiley, New York (1962)

    MATH  Google Scholar 

  28. Pines, D., Bohm, D.: A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bohm, D., Pines, D.: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41, 1345 (2010)

    Article  Google Scholar 

  31. Bauhofer, W., Kovacs, J.Z.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486 (2009)

    Article  Google Scholar 

  32. Liberal, I., Nefedov, I.S., Ederra, I., Gonzalo, R., Tretyakov, S.A.: Electromagnetic response and homogenization of grids of ferromagnetic microwires. J. Appl. Phys. 110, 064909 (2011)

    Article  ADS  Google Scholar 

  33. Landau, L.D., Bell, J.S., Kearsley, M.J., Pitaevskii, L.P., Lifshitz, E.M., Sykes, J.B.: Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, New York (1984)

    Google Scholar 

  34. Velez, A., Aznar, F., Bonache, J., Velazquez-Ahumada, M.C., Martel, J., Martin, F.: Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microwave Wireless Compon. Lett. 19, 197 (2009)

    Article  Google Scholar 

  35. Bonache, J., Gil, I., Garcia-Garcia, J., Martin, F.: Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microwave Theory Tech. 54, 265 (2006)

    Article  ADS  Google Scholar 

  36. Azad, A.K., Dai, J., Zhang, W.: Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 31, 634 (2006)

    Article  ADS  Google Scholar 

  37. Marqués, R., Martín, F., Sorolla, M.: Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. Wiley-Interscience, Hoboken, NJ (2007)

    Book  Google Scholar 

  38. Chui, S.T., Hu, L.: Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys. Rev. B 65, 144407 (2002)

    Article  ADS  Google Scholar 

  39. Pimenov, A., Loidl, A., Przyslupski, P., Dabrowski, B.: Negative refraction in ferromagnet-superconductor superlattices. Phys. Rev. Lett. 95, 247009 (2005)

    Article  ADS  Google Scholar 

  40. Liberal, I., Nefedov, I.S., Ederra, I., Gonzalo, R., Tretyakov, S.A.: On the effective permittivity of arrays of ferromagnetic wires. J. Appl. Phys. 110, 104902 (2011)

    Article  ADS  Google Scholar 

  41. Carbonell, J., García-Miquel, H., Sánchez-Dehesa, J.: Double negative metamaterials based on ferromagnetic microwires. Phys. Rev. B 81, 024401 (2010)

    Article  ADS  Google Scholar 

  42. Chen, H.T., Padilla, W.J., Averitt, R.D., Gossard, A.C., Highstrete, C., Lee, M., O’Hara, J.F., Taylor, A.J.: Electromagnetic metamaterials for terahertz applications. Terahertz Sci. Technol. 1, 42 (2008)

    Google Scholar 

  43. Kafesaki, M., Tsiapa, I., Katsarakis, N., Koschny, T., Soukoulis, C.M., Economou, E.N.: Left-handed metamaterials: The fishnet structure and its variations. Phys. Rev. B 75, 235114 (2007)

    Article  ADS  Google Scholar 

  44. Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V.: Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  45. Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., Soukoulis, C.M.: Magnetic response of metamaterials at 100 terahertz. Science 306, 1351 (2004)

    Article  ADS  Google Scholar 

  46. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  47. Chanda, D., Shigeta, K., Gupta, S., Cain, T., Carlson, A., Mihi, A., Baca, A.J., Bogart, G.R., Braun, P., Rogers, J.A.: Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 6, 402 (2011)

    Article  ADS  Google Scholar 

  48. Thostenson, E.T., Li, C., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491 (2005)

    Article  Google Scholar 

  49. Zhang, D., Wang, P., Murakami, R., Song, X.: Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films. Appl. Phys. Lett. 96, 233114 (2010)

    Article  ADS  Google Scholar 

  50. Wheeler, M.S., Aitchison, J.S., Mojahedi, M.: Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies. Phys. Rev. B 72, 193103 (2005)

    Article  ADS  Google Scholar 

  51. Zhao, Q., Du, B., Kang, L., Zhao, H., Xie, Q., Li, B., Zhang, X., Zhou, J., Li, L., Meng, Y.: Tunable negative permeability in an isotropic dielectric composite. Appl. Phys. Lett. 92, 051106 (2008)

    Article  ADS  Google Scholar 

  52. O’Brien, S., Pendry, J.B.: Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condensed Matter 14, 4035 (2002)

    Article  ADS  Google Scholar 

  53. Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Mavinakuli, P., Karki, A.B., Young, D.P., Guo, Z.: Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J. Phys. Chem. C 114, 16335 (2010)

    Article  Google Scholar 

  54. Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Karki, A.B., Young, D.P., Guo, Z.: Polyaniline-tungsten oxide metacomposites with tunable electronic properties. J. Mater. Chem. 21, 342 (2011)

    Article  Google Scholar 

  55. Gu, H., Guo, J., Wei, S., Guo, Z.: Polyaniline nanocomposites with negative permittivity. J. Appl. Polym. Sci. 130, 2238 (2013)

    Article  Google Scholar 

  56. Gu, H., Guo, J., He, Q., Jiang, Y., Huang, Y., Haldolaarachige, N., Luo, Z., Young, D.P., Wei, S., Guo, Z.: Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale 6, 181 (2014)

    Article  ADS  Google Scholar 

  57. Liu, C.D., Lee, S.N., Ho, C.H., Han, J.L., Hsieh, K.H.: Electrical properties of well-dispersed nanopolyaniline/epoxy hybrids prepared using an absorption-transferring process. J. Phys. Chem. C 112, 15956 (2008)

    Article  Google Scholar 

  58. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  59. Breuer, O., Sundararaj, U.: Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 25, 630 (2004)

    Article  Google Scholar 

  60. Li, B., Sui, G., Zhong, W.H.: Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176 (2009)

    Article  Google Scholar 

  61. Zhu, J., Wei, S., Ryu, J., Guo, Z.: Strain-sensing elastomer/carbon nanofiber “metacomposites”. J. Phys. Chem. C 115, 13215 (2011)

    Article  Google Scholar 

  62. Zhu, J., Gu, H., Luo, Z., Haldolaarachige, N., Young, D.P., Wei, S., Guo, Z.: Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir 28, 10246 (2012)

    Article  Google Scholar 

  63. Zhu, J., Zhang, X., Haldolaarachchige, N., Wang, Q., Luo, Z., Ryu, J., Young, D.P., Wei, S., Guo, Z.: Polypyrrole metacomposites with different carbon nanostructures. J. Mater. Chem. 22, 4996 (2012)

    Article  Google Scholar 

  64. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  65. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  66. Zhu, J., Luo, Z., Wu, S., Haldolaarachchige, N., Young, D.P., Wei, S., Guo, Z.: Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J. Mater. Chem. 22, 835 (2012)

    Article  Google Scholar 

  67. Holloway, C.L., Kuester, E.F., Baker-Jarvis, J., Kabos, P.: A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596 (2003)

    Article  ADS  Google Scholar 

  68. Vendik, O.G., Gashinova, M.S.: Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix. In Proceedings of the 34th European Microwave Conference, Amsterdam, vol. 3, pp. 1209–1212. IEEE Press, Piscataway, NJ (2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1411225&tag=1

  69. Huang, K.C., Povinelli, M.L., Joannopoulos, J.D.: Negative effective permeability in polaritonic photonic crystals. Appl. Phys. Lett. 85, 543 (2004)

    Article  ADS  Google Scholar 

  70. Zhao, Q., Kang, L., Du, B., Zhao, H., Xie, Q., Huang, X., Li, B., Zhou, J., Li, L.: Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008)

    Article  ADS  Google Scholar 

  71. Bush, G.G.: The complex permeability of a high purity yttrium iron garnet (YIG) sputtered thin film. J. Appl. Phys. 73, 6310 (1993)

    Article  ADS  Google Scholar 

  72. Bush, G.G.: Functional dependence of the real part of the initial permeability of the YIG family of ferrites. J. Appl. Phys. 67, 5515 (1990)

    Article  ADS  Google Scholar 

  73. He, Y., He, P., Yoon, S.D., Parimi, P.V., Rachford, F.J., Harris, V.G., Vittoria, C.: Tunable negative index metamaterial using yttrium iron garnet. J. Magn. Magn. Mater. 313, 187 (2007)

    Article  ADS  Google Scholar 

  74. Tsutaoka, T., Kasagi, T., Hatakeyama, K.: Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field. J. Appl. Phys. 110, 053909 (2011)

    Article  ADS  Google Scholar 

  75. Kasagi, T., Tsutaoka, T., Hatakeyama, K.: Negative permeability spectra in Permalloy granular composite materials. Appl. Phys. Lett. 88, 172502 (2006)

    Article  ADS  Google Scholar 

  76. Xu, F., Bai, Y., Qiao, L., Zhao, H., Zhou, J.: Realization of negative permittivity of Co2Z hexagonal ferrite and left-handed property of ferrite composite material. J. Phys. D 42, 025403 (2009)

    Article  ADS  Google Scholar 

  77. Shi, Z.C., Fan, R.H., Zhang, Z.D., Qian, L., Gao, M., Zhang, M., Zheng, L.T., Zhang, X.H., Yin, L.W.: Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Mater. 24, 2349 (2012)

    Article  Google Scholar 

  78. Gao, M., Shi, Z.C., Fan, R.H., Qian, L., Zhang, Z.D., Guo, J.Y.: High‐frequency negative permittivity from Fe/Al2O3 composites with high metal contents. J. Am. Ceram. Soc. 95, 67 (2012)

    Article  Google Scholar 

  79. Shi, Z.C., Fan, R.H., Zhang, Z.D., Gong, H.Y., Ouyang, J., Bai, Y.J., Zhang, X.H., Yin, L.W.: Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 032903 (2011)

    Article  ADS  Google Scholar 

  80. Phan, M.H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323 (2008)

    Article  Google Scholar 

  81. Qin, F.X., Bingham, N.S., Wang, H., Peng, H.X., Sun, J.F., Franco, V., Yu, S.C., Srikanth, H., Phan, M.H.: Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction. Acta Mater. 61, 1284 (2013)

    Article  Google Scholar 

  82. García-Miquel, H., Carbonell, J., Boria, V.E., Sánchez-Dehesa, J.: Experimental evidence of left handed transmission through arrays of ferromagnetic microwires. Appl. Phys. Lett. 94, 054103 (2009)

    Article  ADS  Google Scholar 

  83. Qin, F., Peng, H.X.: Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183 (2013)

    Article  Google Scholar 

  84. Qin, F.X., Pankratov, N., Peng, H.X., Phan, M.H., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. J. Appl. Phys. 107, 09A314 (2010)

    Google Scholar 

  85. Qin, F.X., Peng, H.X., Chen, Z., Wang, H., Zhang, J.W., Hilton, G.: Optimization of microwire/glass-fibre reinforced polymer composites for wind turbine application. Appl. Phys. A 113, 537 (2013)

    Article  ADS  Google Scholar 

  86. Luo, Y., Peng, H.X., Qin, F.X., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays. J. Appl. Phys. 115, 173909 (2014)

    Article  ADS  Google Scholar 

  87. Peng, H.X., Qin, F.X., Phan, M.H., Tang, J., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Co-based magnetic microwire and field-tunable multifunctional macro-composites. J. Non-Crystal. Solids 355, 1380 (2009)

    Article  ADS  Google Scholar 

  88. Makhnovskiy, D., Zhukov, A., Zhukova, V., Gonzalez, J.: Tunable and self-sensing microwave composite materials incorporating ferromagnetic microwires. Adv. Sci. Technol. 54, 201 (2009)

    Article  Google Scholar 

  89. Luo, Y., Peng, H.X., Qin, F.X., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Fe-based ferromagnetic microwires enabled meta-composites. Appl. Phys. Lett. 103, 251902 (2013)

    Article  ADS  Google Scholar 

  90. Baranov, S., Yamaguchi, M., Garcia, K., Vazquez, M.: Application of amorphous microwires for electromagnetic shielding. Moldavian J. Phys. Sci. 9, 76 (2010)

    Google Scholar 

  91. Qin, F.X., Quéré, Y., Brosseau, C., Wang, H., Liu, J.S., Sun, J.F., Peng, H.X.: Two-peak feature of the permittivity spectra of ferromagnetic microwire/rubber composites. Appl. Phys. Lett. 102, 122903 (2013)

    Article  ADS  Google Scholar 

  92. Kittel, C.: On the theory of ferromagnetic resonance. Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  93. Wang, H., Xing, D., Wang, X., Sun, J.: Fabrication and characterization of melt-extracted co-based amorphous wires. Metall. Mater. Trans. A 42, 1103 (2011)

    Article  Google Scholar 

  94. Wang, H., Qin, F.X., Xing, D.W., Cao, F.Y., Peng, H.X., Sun, J.F.: Fabrication and characterization of nano/amorphous dual-phase FINEMET microwires. Mater. Sci. Eng. B 178, 1483 (2013)

    Article  Google Scholar 

  95. Sukstanskii, A.L., Korenivski, V.: Impedance and surface impedance of ferromagnetic multilayers: the role of exchange interaction. J. Phys. D 34, 3337 (2001)

    Article  ADS  Google Scholar 

  96. Liu, L., Kong, L.B., Lin, G.Q., Matitsine, S., Deng, C.R.: Microwave permeability of ferromagnetic microwires composites/metamaterials and potential applications. IEEE Trans. Magn. 44, 3119 (2008)

    Article  ADS  Google Scholar 

  97. Kraus, L., Frait, Z., Ababei, G., Chiriac, H.: Ferromagnetic resonance of transversally magnetized amorphous microwires and nanowires. J. Appl. Phys. 113, 183907 (2013)

    Article  ADS  Google Scholar 

  98. Vázquez, M., Adenot-Engelvin, A.L.: Glass-coated amorphous ferromagnetic microwires at microwave frequencies. J. Magn. Magn. Mater. 321, 2066 (2009)

    Article  ADS  Google Scholar 

  99. Wang, H., Qin, F.X., Xing, D.W., Cao, F.Y., Wang, X.D., Peng, H.X., Sun, J.F.: Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires. Acta Mater. 60, 5425 (2012)

    Article  Google Scholar 

  100. Qin, F.X., Peng, H.X., Fuller, J., Brosseau, C.: Magnetic field-dependent effective microwave properties of microwire-epoxy composites. Appl. Phys. Lett. 101, 152905 (2012)

    Article  ADS  Google Scholar 

  101. Luo, Y., Peng, H.X., Qin, F.X., Adohi, B.J.P., Brosseau, C.: Magnetic field and mechanical stress tunable microwave properties of composites containing Fe-based microwires. Appl. Phys. Lett. 104, 121912 (2014)

    Article  ADS  Google Scholar 

  102. Luo, Y., Qin, F.X., Scarpa, F., Carbonel J., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Peng, H.X.: Hybridized magnetic microwire metacomposites towards microwave cloaking and barcoding applications. arXiv preprint arXiv:1506.07745 (2015).

    Google Scholar 

  103. Qin, F.X., Peng, H.X., Pankratov, N., Phan, M.H., Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. J. Appl. Phys. 108, 044510 (2010)

    Article  ADS  Google Scholar 

  104. Makhnovskiy, D.P., Panina, L.V., Garcia, C., Zhukov, A.P., Gonzalez, J.: Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory. Phys. Rev. B 74, 064205 (2006)

    Article  ADS  Google Scholar 

  105. McVay, J., Hoorfar, A., Engheta, N.: Space-filling curve RFID tags. In Proceedings of IEEE Radio Wireless Symposium, pp. 199–202. IEEE, San Diego, CA (2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1615129.

    Google Scholar 

  106. Jalaly, I., Robertson, D.: Capacitively-tuned split microstrip resonators for RFID barcodes. In Proceedings of European Microwave Conference, vol. 2, pp. 4–7. IEEE, Paris, France (2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1610138.

    Google Scholar 

  107. Thostenson, E.T., Chou, T.W.: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44, 3022 (2006)

    Article  Google Scholar 

  108. Jung, G.Y., Johnston-Halperin, E., Wu, W., Yu, Z., Wang, S.Y., Tong, W.M., Li, Z., Green, J.E., Sheriff, B.A., Boukai, A.: Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett. 6, 351 (2006)

    Article  ADS  Google Scholar 

  109. Hsu, K.H., Schultz, P.L., Ferreira, P.M., Fang, N.X.: Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett. 7, 446 (2007)

    Article  ADS  Google Scholar 

  110. Nagpal, P., Lindquist, N.C., Oh, S.H., Norris, D.J.: Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594 (2009)

    Article  ADS  Google Scholar 

  111. Vignolini, S., Yufa, N.A., Cunha, P.S., Guldin, S., Rushkin, I., Stefik, M., Hur, K., Wiesner, U., Baumberg, J.J., Steiner, U.: A 3D optical metamaterial made by self‐assembly. Adv. Mater. 24, OP23 (2012)

    Article  Google Scholar 

  112. Taboas, J.M., Maddox, R.D., Krebsbach, P.H., Hollister, S.J.: Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24, 181 (2003)

    Article  Google Scholar 

  113. Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518 (2005)

    Article  ADS  Google Scholar 

  114. Liu, J., Qin, F., Chen, D., Shen, H., Wang, H., Xing, D., Phan, M.H., Sun, J.: Combined current-modulation annealing induced enhancement of giant magnetoimpedance effect of Co-rich amorphous microwires. J. Appl. Phys. 115, 17A326 (2014)

    Article  Google Scholar 

  115. Ma, H.F., Cui, T.J.: Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010)

    ADS  Google Scholar 

  116. Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faxiang Qin or Hua-Xin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luo, Y., Qin, F., Scarpa, F., Ipatov, M., Zhukov, A., Peng, HX. (2016). Tuneable Metacomposites Based on Functional Fillers. In: Zhukov, A. (eds) Novel Functional Magnetic Materials. Springer Series in Materials Science, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-26106-5_8

Download citation

Publish with us

Policies and ethics