Soft Magnetic Wires for Sensor Applications

  • Valentina ZhukovaEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)


First amorphous materials using rapid quenching from the liquid state were prepared nearly 50 years ago [1–4]. Development of the rapid-quenching technique allowed obtaining of new materials with metastable crystalline, amorphous, nanocrystalline, granular structures with a new combination of physical properties (mechanical, magnetic, electrochemical, etc.) and opening of new fields of research in material science, magnetism, and technology. During the next years, few rapid-quenching technologies allowing preparation of different types of rapidly quenched materials have been developed. At the beginning most attention has been paid to studies of planar rapidly quenched materials: rapidly quenched ribbons produced by quenching on the drum [4–6].


Rapid quenching Amorphous alloys Magnetization curve Magnetostriction constant Nanocrystalline materials Magnetic sensors Magnetoelastic properties Giant magnetoimpedance Magnetic bistability Magnetic permeability 



Authors are grateful to Dr. A. Zhukov for the help with the chapter preparation and wish to acknowledge the contribution of Dr. J. M. Blanco, Dr. M. Ipatov, and Dr. A. Chizhik. This work was supported by the Spanish MINECO under MAT2013-47231-C2-1-P Project and by the Basque Government under Saiotek 13 PROMAGMI (S-PE13UN014) and DURADMAG (S-PE13UN007) projects.


  1. 1.
    Miroshnichenko, I.S., Salli, I.V.: A device for the crystallization of alloys at a high cooling rate. Ind. Lab. 25, 1463 (1959) in English, Zav. Lab. 11, 1398 (1959)Google Scholar
  2. 2.
    Klement, K., Wilens, R.H., Duwez, P.: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    Duwez, P., Williams, R.J., Klement, K.: Continuous series of metastable solid solutions in Ag-Cu alloys. Appl. Phys. 31, 1136–1142 (1966)CrossRefGoogle Scholar
  4. 4.
    Duwez, P.: Metastable phases obtained by rapid quenching from the liquid state. In: Reiss, H. (ed.) Progress in solid state chemistry of alloy phases, vol. 3, pp. 377–406. Pergamon Press, Oxford (1966)Google Scholar
  5. 5.
    Jones, H.: Splat cooling and metastable phases. Rep. Prog. Phys. 36, 1425–1497 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    Luborsky, F.E.: Amorphous metallic alloys. Butterworth & CoPublishers Ltd, London, UK (1983)CrossRefGoogle Scholar
  7. 7.
    Humphrey, F.B., Mohri, K., Yamasaki, J., et al.: Re-entrant magnetic flux reversal in amorphous wires. In: Hernando, A., Madurga, V., Sánchez-Trujillo, M.C., Vázquez, M. (eds.) Magnetic properties of amorphous metals, pp. 110–116. Elsevier Science Publisher, Amsterdam, The Netherlands (1987)Google Scholar
  8. 8.
    Humphrey, F.B.: Article surveillance magnetic marker having a hysteresis loop with large Barkhausen discontinuities. US Patent 4,660,025, 21 Apr 1987Google Scholar
  9. 9.
    Mohri, K., Humphrey, F.B., Kawashima, K., et al.: Large barkhausen and matteucci effects in FeCoSiB, FeCrSiB, and FeNiSiB amorphous wires. IEEE Trans. Magn. 26, 1789–1791 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Vázquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D Appl. Phys. 29, 939–949 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Wiegand, J.R.: Bistable magnetic device.US Patent 3,820,090, 1974Google Scholar
  12. 12.
    Heiden, C., Rogalla, H.: Barkhausen jump field distribution of iron whiskers. J. Magn. Magn. Mater. 26, 275–277 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    Ponomarev, B.K., Zhukov, A.: Fluctuations of start field exhibited by amorphous alloy. Sov. Phys. Solid State 26, 2974–2979 (1984)Google Scholar
  14. 14.
    Ponomarev, B.K., Zhukov, A.P.: Effect of temperature on the start field distribution of amorphous Co70Fe5Si10B15 alloy. Sov. Phys. Solid state 27, 444–448 (1985)Google Scholar
  15. 15.
    Mizutani, M., Katoh, H., Panina, L.V., et al.: Distance sensors utilizing a current-exciting large Barkhausen effect in twisted amorphous magnetostrictive wires. IEEE Trans. J. Magn. Japan 9(2), 102–108 (1994)CrossRefGoogle Scholar
  16. 16.
    Zhukov, A.: Domain wall propagation in a Fe-rich glass-coated amorphous microwire. Appl. Phys. Lett. 78, 3106–3108 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Beach, R.S., Berkowitz, A.E.: Giant magnetic-field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64, 3652–3654 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Harrison, E.P., Turney, G.L., Rowe, H., et al.: The electrical properties of high permeability wires carrying alternating current. Proc. Roy. Soc. Math. Phys. Eng. Sci. 157(891), 451–479 (1936)ADSCrossRefGoogle Scholar
  20. 20.
    Ciureanu, P., Rudkowska, G., Clime, L., et al.: Anisotropy optimization of giant magnetoimpedance sensors. J. Optoelectron. Adv. Mater. 6, 905–910 (2004)Google Scholar
  21. 21.
    Zhukov, A., Ipatov, M., Churyukanova, M., et al.: Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586(Suppl. 1), S279–S286 (2014)CrossRefGoogle Scholar
  22. 22.
    Yoshizawa, Y., Oguma, S., Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044–6046 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Yoshizawa, Y., Yamauchi, K.: Fe-based soft magnetic alloy composed of ultrafine grain structure. Mater. Trans. JIM 31, 307–314 (1990)CrossRefGoogle Scholar
  24. 24.
    Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Herzer, G.: Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mater. 294, 99–106 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Zhukova, V., Zhukov, A., Kraposhin, V., et al.: Magnetic properties and GMI of soft magnetic amorphous fibers. Sens. Actuators (A) 106, 225–229 (2003). doi: 10.1016/S0924-4247(03)00172-9 CrossRefGoogle Scholar
  27. 27.
    Ohnaka, I., Fukusako, T., Ohmichi, T., et al.: Production of amorphous filament by in rotating- liquid spinning method. In: Masumoto T., Suzuki K. (eds.) Proc. 4th Inter. Conf. on rapidly quenched metals. pp. 31–34 (1982)Google Scholar
  28. 28.
    Hagiwara, M., Inoue, A., Masumoto, T.: Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating water spinning method. Metall. Trans. 13A, 373–382 (1982)CrossRefGoogle Scholar
  29. 29.
    Ogasawara, I., Ueno, S.: Preparation and properties of amorphous wires. IEEE Trans. Magn. 31(2), 1219–1223 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    Masumoto, T., Ohnaka, I., Inoue, A., et al.: Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water. Scr. Metall. 15, 293–296 (1981)CrossRefGoogle Scholar
  31. 31.
    Maringer, E., Mobley, C.E. US Patent 3,871,439, Mar 1975Google Scholar
  32. 32.
    Rudkowski, P., Rudkowska, G., Strom-Olsen, J.O.: The fabrication of fine metallic fibers by continuous melt extraction and their magnetic and mechanical properties. Mater. Sci. Eng. A 133, 158–161 (1991)CrossRefGoogle Scholar
  33. 33.
    Rudkowski, P., Rudkowska, G., Strom-Olsen, J.O., et al.: The magnetic properties of sub 20 m metallic fibers formed by continuous melt extraction. J. Appl. Phys. 69, 5017–5019 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    Rudkowski, P., Strom-Olsen, J.O., Rudkowska, G., et al.: Ultra fine, ultra soft metallic fibers. IEEE Trans. Magn. 31, 1224–1228 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    Zhukov, A., Zhukova, V.: Magnetic properties and applications of ferromagnetic microwires with amorphous and nanocrystalline structure, p. 162. Nova, NewYork (2009). ISBN 978-1-60741-770-5Google Scholar
  36. 36.
    Zhukov, A., Zhukova, V.: Magnetic sensors based on thin magnetically soft wires with tunable magnetic properties and its applications. International Frequency Sensor Association (IFSA) Publishing, Spain (2014). ISBN 10: 84-617-1866-6Google Scholar
  37. 37.
    Taylor, G.F.: A method of drawing metallic filaments and a discussion of their properties and uses. Phys. Rev. 23, 655–660 (1924)ADSCrossRefGoogle Scholar
  38. 38.
    Taylor, G.F.: Process and apparatus for making filaments. United States Patent Office, 1,793,529, 24 Feb 1931Google Scholar
  39. 39.
    Ulitovsky, A.V.: Micro-technology in design of electric devices, vol. 7. p. 6 Leningrad (1951)Google Scholar
  40. 40.
    Ulitovski, A.V., Avernin, N.M.: Method of fabrication of metallic microwire. Patent No161325 (USSR), 19.03.64. Bulletin No7, p. 14 (1964)Google Scholar
  41. 41.
    Ulitovsky, A.V., Maianski, I.M., Avramenco, A.I.: Method of continuous casting of glass coated microwire. Patent No128427 (USSR), 15.05.60. Bulletin. No10, p. 14 (1960)Google Scholar
  42. 42.
    Badinter, E.Ya., Berman, N.R., Drabenko, I.F. et al.: Cast microwires and its properties. Shtinica, Kishinev (1973)Google Scholar
  43. 43.
    Larin, V.S., Torcunov, A.V., Zhukov, A., et al.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1–2), 39–45 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Zhukov, A., Kostitcyna, E., Shuvaeva, E., et al.: Effect of composite origin on magnetic properties of glass-coated microwires. Intermetallics 44, 88–93 (2014)CrossRefGoogle Scholar
  45. 45.
    Zhukov, A., Shuvaeva, E., Kaloshkin, S., et al.: Influence of the defects on magnetic properties of glass-coated microwires. J. Appl. Phys. 115, 17A305 (2014)CrossRefGoogle Scholar
  46. 46.
    Zhukov, A., Shuvaeva, E., Kaloshkin, S., et al.: Studies of the defects influence on magnetic properties of glass-coated microwires. IEEE Trans. Magn. 50(11), 2006604 (2014)Google Scholar
  47. 47.
    Zhukov, A., Garcia, C., Ilyn, M., et al.: Magnetic and transport properties of granular and Heusler-type glass-coated microwires. J. Magn. Magn. Mater. 324, 3558–3562 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Zhukov, A., García, C., Zhukova, V., et al.: Fabrication and magnetic properties of Cu50(Fe69Si10B16C5)50 thin microwires. J. Non Cryst. Solids 353, 922–924 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    García, C., Zhukov, A., González, J., et al.: Fabrication, structural and magnetic characterization of thin microwires with novel composition Cu70(Co70Fe5Si10B15)30. J. Alloys Compd. 483, 566–569 (2009)CrossRefGoogle Scholar
  50. 50.
    Varga, R., Ryba, T., Vargova, Z., et al.: Magnetic and structural properties of Ni-Mn-Ga Heusler-type microwires. Scr. Mater. 65(8), 703–706 (2011)CrossRefGoogle Scholar
  51. 51.
    Shen, L.P., Uchiyama, T., Mohri, K., et al.: Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire. IEEE Trans. Magn. 33, 3355–3359 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    Mohri, K., Uchiyama, T., Shen, L.P., et al.: Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls. J. Magn. Magn. Mater. 249, 351–356 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    García, C., Zhukova, V., Gonzazez, J., et al.: Magnetic and transport properties of Fe-rich thin cold-drawn amorphous wires. J. Alloys Compd. 488, 5–8 (2010)CrossRefGoogle Scholar
  54. 54.
    Garcia, C., Chizhik, A., del Val, J.J., et al.: Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires. J. Magn. Magn. Mater. 294, 193–201 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Zhukova, V., Umnov, P., Molokanov, V., et al.: Magnetic properties and giant magneto-impedance effect of ductile amorphous microwires without glass coating. Sens. Lett. 10(3/4), 712–716 (2012)Google Scholar
  56. 56.
    Chiriac, H., Corodeanu, S., Lostun, M., et al.: Magnetic behavior of rapidly quenched submicron amorphous wires. J. Appl. Phys. 107, 09A301 (2010)CrossRefGoogle Scholar
  57. 57.
    Zhukov, A., Blanco, J.M., Ipatov, M., et al.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223 (2012). doi: 10.1186/1556-276X-7-223 ADSCrossRefGoogle Scholar
  58. 58.
    Zhukov, A.P.: The remagnetization process of bistable amorphous alloys. Mater. Des. 5, 299–305 (1993)CrossRefGoogle Scholar
  59. 59.
    Zhukov, A.P., Vázquez, M., Velázquez, J., et al.: The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J. Magn. Magn. Mater. 151, 132–138 (1995)ADSCrossRefGoogle Scholar
  60. 60.
    Aragoneses, P., Blanco, J.M., Dominguez, L., et al.: The stress dependence of the switching field in glass-coated amorphous microwires. J. Phys. D Appl. Phys. 31(1998), 3040–3045 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    Zhukova, V., Zhukov, A., Blanco, J.M., Gonzalez, J., et al.: Effect of applied stress on remagnetization and magnetization profile of Co-Si-B amorphous wire. J. Magn. Magn. Mater. 242–245, 1439–1442 (2002)CrossRefGoogle Scholar
  62. 62.
    Zhukova, V., Zhukov, A., Blanco, J.M., et al.: Effect of applied stress on remagnetization and magnetization profile of Co-Si-B amorphous wire. J. Magn. Magn. Mater. 258–259, 189–191 (2003)CrossRefGoogle Scholar
  63. 63.
    Zhukova, V., Zhukov, A., Blanco, J.M., et al.: Effect of applied stress on magnetization profile of Fe-Si-B amorphous wire. J. Appl. Phys. 93, 7208–7210 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    Antonov, A.S., Borisov, V.T., Borisov, O.V., et al.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D Appl. Phys. 33, 1161–1168 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    Chiriac, H., Ovari, T.A., Zhukov, A.: Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254–255, 469–471 (2003)CrossRefGoogle Scholar
  66. 66.
    Chiriac, H., Ovari, T.A., Pop, G., et al.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105–10113 (2005)Google Scholar
  67. 67.
    Velázquez, J., Vazquez, M., Zhukov, A.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11(10), 2499–2505 (1996)ADSCrossRefGoogle Scholar
  68. 68.
    Zhukov, A., Ipatov, M., Blanco, J.M., et al.: Fast magnetization switching in amorphous microwires. Acta Phys. Pol. A 126, 7–11 (2014)CrossRefGoogle Scholar
  69. 69.
    Garcia Prieto, M.J., Pina, E., Zhukov, A.P., et al.: Glass coated Co-rich amorphous microwires with improved permeability. Sens. Actuators A 81(1–3), 227–231 (2000)CrossRefGoogle Scholar
  70. 70.
    Zhukov, A., Gonzalez, J., Blanco, J.M., et al.: Induced magnetic anisotropy in Co-Mn-Si-B amorphous microwires. J. Appl. Phys. 87, 1402–1408 (2000)ADSCrossRefGoogle Scholar
  71. 71.
    Zhukov, A., Vázquez, M., Velázquez, J., et al.: Frequency dependence of coercivity in rapidly quenched amorphous materials. J. Mater. Sci. Eng. A 226–228, 753–756 (1997)CrossRefGoogle Scholar
  72. 72.
    Allwood, D.A., Xiong, G., Faulkner, C.C., et al.: Magnetic domain-wall logic. Science 309, 1688–1692 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    Hayashi, M., Thomas, L., Rettner, C., et al.: Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205(4) (2006)ADSCrossRefGoogle Scholar
  74. 74.
    Chen, D.-X., Dempsey, N.M., Vázquez, M., Hernando, A.: Propagating domain-wall shape and dynamics in iron-rich amorphous wires. IEEE Trans. Magn. 31, 781–790 (1995)ADSCrossRefGoogle Scholar
  75. 75.
    Varga, R., Zhukov, A., Zhukova, V., et al.: Supersonic domain wall in magnetic microwires. Phys. Rev. B 76, 32406 (2007)CrossRefGoogle Scholar
  76. 76.
    Kunza, A., Reiff, S.C.: Enhancing domain wall speed in nanowires with transverse magnetic fields. J. Appl. Phys. 103, 07D903 (2008)Google Scholar
  77. 77.
    Zhukov, A., Blanco, J.M., Chizhik, A., et al.: Manipulation of domain wall dynamics in amorphous microwires through domain wall collision. J. Appl. Phys. 114, 043910 (2013)ADSCrossRefGoogle Scholar
  78. 78.
    Gudoshnikov, S.A., Grebenshchikov, Y.B., Ljubimov, B.Y., et al.: Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Stat. Sol. A 206(4), 613–617 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    Ekstrom, P.A., Zhukov, A.: Spatial structure of the head-to-head propagating domain wall in glass-covered FeSiB microwire. J. Phys. D Appl. Phys. 43, 205001 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    Sixtus, K.J., Tonks, L.: Propagation of large Barkhausen discontinuities. II. Phys. Rev. 42, 419 (1932)ADSCrossRefGoogle Scholar
  81. 81.
    Ipatov, M., Zhukova, V., Zvezdin, A.K., Zhukov, A.: Mechanisms of the ultrafast magnetization switching in bistable amorphous microwires. J. Appl. Phys. 106, 103902 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    Konno, Y., Mohri, K.: Magnetostriction measurements for amorphous wires. IEEE Trans. Magn. 25(5), 3623–3625 (1989)ADSCrossRefGoogle Scholar
  83. 83.
    Zhukov, A., Zhukova, V., Blanco, J.M., et al.: Magnetostriction in glass-coated magnetic microwires. J. Magn. Magn. Mater. 258, 151–157 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    Zhukov, A., Blanco, J.M., Ipatov, M., Zhukova, V.: Fast magnetization switching in thin wires: magnetoelastic and defects contributions. Sens. Lett. 11(1), 170–176 (2013)CrossRefGoogle Scholar
  85. 85.
    Panina, L.V., Mizutani, M., Mohri, K., et al.: Dynamics and relaxation of large Barkhausen discontinuity in amorphous wires. IEEE Trans. Magn. 27(6), 5331–5333 (1991)ADSCrossRefGoogle Scholar
  86. 86.
    Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A.: Domain wall propagation in Fe-rich amorphous microwires. Physica B 407, 1442–1445 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    Beach, G.S.D., Tsoi, M., Erskine, J.L.: Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008)ADSCrossRefGoogle Scholar
  88. 88.
    Blanco, J.M., Zhukova, V., Ipatov, M., Zhukov, A.: Magnetic properties and domain wall propagation in micrometric amorphous microwires. Sens. Lett. 11(1), 187–190 (2013)CrossRefGoogle Scholar
  89. 89.
    Vázquez, M., Zhukov, A.: Magnetic properties of glass-coated amorphous and nanocrystalline microwires. J. Magn. Magn. Mater. 160, 223–228 (1996)ADSCrossRefGoogle Scholar
  90. 90.
    Zhukov, A., Ipatov, M., Garcia, C., et al.: From manipulation of giant magnetoimpedance in thin wires to industrial applications. J. Supercond. Nov. Magn. 26(4), 1045–1054 (2013)CrossRefGoogle Scholar
  91. 91.
    Hernando, A., Barandiarán, J.M.: The initial Matteucci effect. J. Phys. D Appl. Phys. 8, 833–840 (1975)ADSCrossRefGoogle Scholar
  92. 92.
    Nielsen, O.V.: Magnetic anisotropy determined by differential magnetization measurements in twisted amorphous ribbons. J. Magn. Magn. Mater. 24, 81–92 (1981)ADSCrossRefGoogle Scholar
  93. 93.
    Mohri, K., Humphrey, F.B., Yamasaki, J., Okamura, K.: Jitter-less pulse generator elements using amorphous bistable wires. IEEE Trans. Magn. 20, 1409 (1984)ADSCrossRefGoogle Scholar
  94. 94.
    Cobeño, A.F., Blanco, J.M., Zhukov, A., et al.: Matteucci effect in glass coated microwires. IEEE Trans. Magn. 35, 3382–3384 (1999)ADSCrossRefGoogle Scholar
  95. 95.
    Zhukova, V., Chizhik, A., Zhukov, A., et al.: Optimization of giant magneto-impedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38(5, part I), 3090–3092 (2002)ADSCrossRefGoogle Scholar
  96. 96.
    Pirota, K.R., Kraus, L., Chiriac, H., Knobel, M.: Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire. J. Magn. Magn. Mater. 221, L243–L247 (2000). doi: 10.1109/TMAG.2002.802397 ADSCrossRefGoogle Scholar
  97. 97.
    Usov, N.A., Antonov, A.S., Lagar`kov, A.N.: Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. J. Magn. Magn. Mater. 185, 159–173 (1998)ADSCrossRefGoogle Scholar
  98. 98.
    Aragoneses, P., Zhukov, A., Gonzalez, J., et al.: Effect of AC driving current on magneto-impedance effect. Sens. Actuators A 81(1–3), 86–90 (2000)CrossRefGoogle Scholar
  99. 99.
    Zhukova, V., Ipatov, M., García, C., et al.: Development of ultra-thin glass-coated amorphous microwires for high frequency magnetic sensors applications. Open Mater. Sci. Rev. 1, 1–12 (2007)CrossRefGoogle Scholar
  100. 100.
    Vázquez, M., Zhukov, A., Aragoneses, P., et al.: Magneto-impedance of glass-coated amorphous CoMnSiB microwires. IEEE Trans. Magn. 34(3), 724–728 (1998)ADSCrossRefGoogle Scholar
  101. 101.
    Phn, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)CrossRefGoogle Scholar
  102. 102.
    Sun, J.-F., Liu, J.-S., Xing, D.-W., Xue, X.: Experimental study on the effect of alternating-current amplitude on GMI output stability of Co-based amorphous wires. Phys. Status Solidi A 208(4), 910–914 (2011)ADSCrossRefGoogle Scholar
  103. 103.
    Liu, J., Shen, H., Xing, D., Sun, J.: Optimization of GMI properties by AC Joule annealing in melt-extracted Co-rich amorphous wires for sensor applications. Phys. Status Solidi A 211(7), 1577–1582 (2014)CrossRefGoogle Scholar
  104. 104.
    Zhao, Y., Hao, H., Zhang, Y.: Preparation and giant magneto-impedance behavior of Co-based amorphous wires. Intermetallics 42, 62–67 (2013)CrossRefGoogle Scholar
  105. 105.
    Zhukova, V., Umnov, P., Molokanov, V., et al.: Magnetic properties and GMI effect of ductile amorphous microwires. IEEE Trans. Magn. 48(11), 4034–4037 (2012)ADSCrossRefGoogle Scholar
  106. 106.
    Ménard, D., Britel, M., Ciureanu, P., Yelon, A.: Giant magnetoimpedance in a cylindrical conductor. J. Appl. Phys. 84, 2805–2814 (1998)ADSCrossRefGoogle Scholar
  107. 107.
    Zhukov, A., Ipatov, M., Zhukova, V.: Giant magneto-impedance effect of thin magnetic wires at elevated frequencies. J. Appl. Phys. 111, 07E512 (2012)CrossRefGoogle Scholar
  108. 108.
    Zhukov, A., Talaat, A., Ipatov, M., Zhukova, V.: Tailoring of high frequency giant magnetoimpedance effect of amorphous Co-rich microwires. IEEE Magn. Lett. (2015)Google Scholar
  109. 109.
    Ipatov, M., Zhukova, V., Zhukov, A., et al.: Low-field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B 81, 134421 (2010)ADSCrossRefGoogle Scholar
  110. 110.
    Zhukov, A.: Design of magnetic properties of Fe-rich glass – coated magnetic microwires for technical applications. Adv. Funct. Mater. 16(5), 675–680 (2006)MathSciNetCrossRefGoogle Scholar
  111. 111.
    Blanco, J.M., Zhukov, A., Gonzalez, J.: Torsional stress impedance and magneto-impedance in (Co0.95Fe0.05)72.5Si12.5B15 amorphous wire with helical induced anisotropy. J. Phys. D Appl. Phys. 32, 3140–3145 (1999)ADSCrossRefGoogle Scholar
  112. 112.
    Blanco, J.M., Zhukov, A., Gonzalez, J.: Asymmetric torsion stress giant magnetoimpedance in nearly-zero magnetostrictive amorphous wires. J. Appl. Phys. 87(9), 4813–4815 (2000)ADSCrossRefGoogle Scholar
  113. 113.
    Zhukov, A.: Glass-coated magnetic microwires for technical applications. J. Magn. Magn. Mater. 242–245, 216–223 (2002)CrossRefGoogle Scholar
  114. 114.
    Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Recent research on magnetic properties of glass-coated microwires. J. Magn. Magn. Mater. 294, 182–192 (2005)ADSCrossRefGoogle Scholar
  115. 115.
    Talaat, A., Ipatov, M., Zhukova, V., et al.: Giant magneto-impedance effect in thin Finemet nanocrystalline microwires. Phys. Status Solidi C 11(5–6), 1120–1124 (2014)CrossRefGoogle Scholar
  116. 116.
    Zhukov, A.P., Talaat, A., Ipatov, M., et al.: Effect of nanocrystallization on magnetic properties and GMI effect of microwires. IEEE Trans. Magn. 50(6), 2501905 (2014)Google Scholar
  117. 117.
    Talaat, A., Zhukova, V., Ipatov, M.: Effect of nanocrystallization on giant magnetoimpedance effect of Fe-based microwires. Intermetallics 51, 59–63 (2014)CrossRefGoogle Scholar
  118. 118.
    Talaat, A., Zhukova, V., Ipatov, M., et al.: Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. J. Appl. Phys. 115, 17A313 (2014)CrossRefGoogle Scholar
  119. 119.
    Zhukova, V., Talaat, A., Ipatov, M., et al.: Effect of nanocrystallization on magnetic properties and GMI effect of Fe-rich microwires. J. Electron. Mater. 43(12), 4540–4547 (2014). doi: 10.1007/s11664-014-3370-4 ADSCrossRefGoogle Scholar
  120. 120.
    Churyukanova, M., Zhukova, V., Talaat, A., et al.: Correlation between thermal and magnetic properties of glass coated microwires. J. Alloys Compd. 615(SUPPL 1), S242–S246 (2014). doi: 10.1016/j.jallcom.2013.11.191 CrossRefGoogle Scholar
  121. 121.
    Honkura, Y.: Development of amorphous wire type MI sensors for automobile use. Magn. Magn. Mater. 249, 375–381 (2002)ADSCrossRefGoogle Scholar
  122. 122.
    Mohri, K., Honkura, Y.: Amorphous wire and CMOS IC based magneto-impedance sensors—Origin, topics, and future. Sens. Lett. 5(2), 267–270 (2007)CrossRefGoogle Scholar
  123. 123.
    Peng, H.X., Qin, F.X., Phan, M.H., et al.: Co-based magnetic microwire and field-tunable multifunctional macro-composites. J. Non Cryst. Solids 355, 1380–1386 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    Panina, L., Ipatov. M., Zhukova. V. et al.: Tuneable composites containing magnetic microwires, chapter 22: 431-460 DOI: 10.5772/21423. In: Cuppoletti, J. (ed) Metal, ceramic and polymeric composites for various uses, InTech - Open Access Publisher (, Janeza Trdine, 9, 51000 Rijeka, Croatia, DOI: 10.5772/1428 ISBN: 978-953-307-353-8 (ISBN 978-953-307-1098-3) (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Materials Physics, Chemistry FacultyBasque Country UniversitySan SebastiánSpain
  2. 2.Department of Applied PhysicsEUPDS, UPV/EHUSan SebastianSpain

Personalised recommendations