Advertisement

Above Room Temperature Ferromagnetism in Dilute Magnetic Oxide Semiconductors

  • A. S. Semisalova
  • A. Orlov
  • A. Smekhova
  • E. Gan’shina
  • N. Perov
  • W. Anwand
  • K. Potzger
  • E. Lähderanta
  • A. GranovskyEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)

Abstract

In this chapter, we will survey early and recent experimental results on magnetic properties of dilute magnetic oxide semiconductors, focusing on TiO2-δ:Co and TiO2-δ:V. Room temperature ferromagnetism was observed in both types of thin film samples fabricated by RF sputtering, but their magnetic properties appeared to be quite different. Magnetic moments in case of TiO2-δ:Co are mostly associated with local polarization of Co ions and induced defects. There is an evidence of intrinsic ferromagnetism in the case of low Co content (<1 at.%). Room temperature ferromagnetism was observed in TiO2-δ:V at V content from 3 up to 18 at.% in the whole resistivity range from 10−3 up to 106 Ω cm. Positron annihilation spectroscopy revealed a correlation between magnetization and concentration of the negatively charged defects in TiO2-δ:V thin films. The origin of room temperature ferromagnetism in these systems is discussed. Besides, the recent research findings in ZnO-based magnetic semiconductors are briefly discussed with focus on defect-induced ferromagnetism.

Keywords

Dilute magnetic oxides Dilute magnetic semiconductors Above room temperature ferromagnetism Defect-induced ferromagnetism Positron annihilation spectroscopy 

Abbreviations

AHE

Anomalous Hall effect

DMO

Dilute magnetic oxides

DMS

Dilute magnetic semiconductors

EDX

Energy dispersive X-ray analysis

MO

Magneto-optical

PAS

Positron annihilation spectroscopy

RF

Radio frequency

SQUID

Superconducting quantum interference device

TKE

Transversal Kerr effect

TM

Transition metal

XANES

X-ray absorption near-edge structure

XMCD

X-ray magnetic circular dichroism

XRD

X-ray diffraction

ZFC/FC

Zero field cooled/field cooled

Notes

Acknowledgments

This work is partially supported by the Initiative and Networking Fund of the German Helmholtz Association, Helmholtz-Russia Joint Research Group HRJRG-314, and the Russian Foundation for Basic Research, RFBR #12-02-91321-SIG_a.

References

  1. 1.
    Dietl, T., Ohno, H.: Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Ohno, H.: A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Olejnik, K., Owen, M.H.S., Novak, V., et al.: Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga, Mn)As: A surface oxide control study. Phys. Rev. B 78, 054403 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, M., Campion, R.P., Rushforth, A.W., et al.: Achieving high Curie temperature in (Ga, Mn)As. Appl. Phys. Lett. 93, 132103 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Matsumoto, Y., Murakami, M., Shono, T., et al.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Rylkov, V.V., Gan’shina, E.A., Novodvorskii, O.A., et al.: Defect-induced high-temperature ferromagnetism in Si1-xMnx (x = 0.52–0.55) alloys. EPL 130, 57014 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Coey, J.M.D., Stamenov, P., Gunning, R.D., et al.: Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Straumal, B.B., Mazilkin, A.A., Protasova, S.G., et al.: Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. Phys. Rev. B 79, 205206 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Zhou, S.: Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation. Nucl. Instrum. Meth. Phys. Res. 326, 55–60 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Dietl, T., Ohno, H., Matsukura, F., et al.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Janisch, R., Spaldin, N.A.: Understanding ferromagnetism in Co-doped TiO2 anatase from first principles. Phys. Rev. B 73, 035201 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Ivanov, V.A., Ugolkova, E.A., Pashkova, O.N., et al.: Ferromagnetism in dilute magnetic semiconductors and new materials for spintronics. J. Magn. Magn. Mater. 300, e32–e36 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Calderon, M.J., Das Sarma, S.: Theory of carrier-mediated ferromagnetism in dilute magnetic oxides. Ann. Phys. 322, 2618–2634 (2007)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Abraham, D.W., Frank, M.M., Guha, S.: Absence of magnetism in hafnium oxide films. Appl. Phys. Lett. 87, 252502 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Fukumura, T., Toyosaki, H., Yamada, Y.: Magnetic oxide semiconductors. Semicond. Sci. Technol. 20, S103–S111 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Pearton, S.J., Heo, W.H., Ivill, M., et al.: Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59–R74 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Hong, N.H. (ed.): Magnetism in semiconducting oxides. Transworld Reseach Network, India (2007)Google Scholar
  20. 20.
    Griffin, K.A., Pakhomov, A.B., Wang, C.M., et al.: Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94, 157204 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Orlov, A.F., Perov, N.S., Balagurov, L.A., et al.: Giant magnetic moments in oxide ferromagnetic semiconductors. JETP Lett. 86, 352–354 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Belghazi, Y., Schmerber, G., Colis, S., et al.: Extrinsic origin of ferromagnetism in ZnO and Zn0.9Co0.1O magnetic semiconductor films prepared by sol–gel technique. Appl. Phys. Lett. 89, 122504 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Ogale, S.B., Choudhary, R.J., Buban, J.P., et al.: High-temperature ferromagnetism with a giant magnetic moment in transparent Co doped SnO2–δ. Phys. Rev. Lett. 91, 077205 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Hong, N.H., Sakai, J., Prellier, W., et al.: Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B 70, 195204 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    He, J., Xu, S., Yoo, Y.K., et al.: Room temperature ferromagnetic n-type semiconductor in (In1−xFex)2O3−σ. Appl. Phys. Lett. 86, 052503 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Pemmaraju, C.D., Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Hong, N.H., Sakai, J., Huong, N.T., Brize, V.: Room temperature ferromagnetism in laser ablated Ni-doped In2O3 thin film. Appl. Phys. Lett. 87, 102505 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Chambers, S.A., Droubay, T., Wang, C.M., et al.: Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257–1259 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Balagurov, L.A., Gan’shina, E.A., Klimonskii, S.O., et al.: Boundary conditions for the formation of a ferromagnetic phase during the deposition of Ti1-xCoxO2-δ thin films. Crystallogr. Rep. 50, 686–689 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Suzuki, T., Souda, R.: TiO epitaxial film growth on MgO(001) and its surface structural analysis. Surf. Sci. 445, 506–511 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Kim, J.-Y., Park, J.-H., Park, B.-G., et al.: Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films. Phys. Rev. Lett. 90, 017401 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Seong, N.-J., Yoon, S.-G., Cho, C.-R.: Effects of Co-doping level on the microstructural and ferromagnetic properties of liquid-delivery metalorganic-chemical-vapor-deposited Ti1−xCoxO2 thin films. Appl. Phys. Lett. 81, 4209–4211 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Fukumura, T., Toyosaki, H., Ueno, K., et al.: Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO2. New J. Phys. 10, 055018 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Tiwari, A., Bhosle, V.M., Ramachandran, S., et al.: Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 88, 142511 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Orlov, A.F., Balagurov, L.A., Kulemanov, I.V., et al.: Intrinsic ferromagnetism created by vacancy injection in a semiconductor oxide Ti1-xCoxO2-δ. Phys. Sol. Stat. 53, 482–484 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Singh, V.R., Ishigami, K., Verma, V.K., et al.: Ferromagnetism of cobalt-doped anatase TiO2 studied by bulk- and surface-sensitive soft X-ray magnetic circular dichroism. Appl. Phys. Lett. 100, 242404 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Fukumura, T., Yamada, Y., Tamura, K., et al.: Magneto-optical spectroscopy of anatase TiO2 doped with Co. Jap. J. Appl. Phys. 42, L105–L107 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Toyosaki, H., Fukumura, T., Yamada, Y., Kawasaki, M.: Evolution of ferromagnetic circular dichroism coincident with magnetization and anomalous Hall effect in Co-doped rutile TiO2. Appl. Phys. Lett. 86, 182503 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Weng, H., Dong, J., Fukumura, T., et al.: First principles investigation of the magnetic circular dichroism spectra of Co-doped anatase and rutile TiO2. Phys. Rev. B 73, 121201(R) (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Gan’shina, E.A., Granovsky, A.B., Orlov, A.F., et al.: Magneto-optical spectroscopy of diluted magnetic oxides TiO2−δ: Co. JMMM 321, 723–725 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Weakliem, H.A.: Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals. J. Chem. Phys. 36, 2117–2140 (1962)ADSCrossRefGoogle Scholar
  43. 43.
    Enomoto, M.: The O-Ti-V system (oxygen-titanium-vanadium). J. Phase. Equilibria 17, 539–545 (1995)CrossRefGoogle Scholar
  44. 44.
    Hai, N.N., Khoi, N.T., Vinh, P.V.: Preparation and magnetic properties of TiO2 doped with V, Mn, Co, La. J. Phys. Conf. Ser. 187, 012071 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Lü, X., Li, J., Mou, X., et al.: Room-temperature ferromagnetism in Ti1-xVxO2 nanocrystals synthesized from an organic-free and water-soluble precursor. J. All. Comp. 499, 160–165 (2010)CrossRefGoogle Scholar
  46. 46.
    Orlov, A.F., Balagurov, L.A., Kulemanov, I.V., et al.: Magnetic and magneto-optical properties of Ti1-xVxO2-δ semiconductor oxide films: Room temperature ferromagnetism versus resistivity. SPIN 02, 1250011 (2012)CrossRefGoogle Scholar
  47. 47.
    Le Roy, D., Valloppilly, S., Skomski, R., et al.: Magnetism and structure of anatase (Ti1-xVx)O2 films. J. Appl. Phys. 111, 07C118 (2012)Google Scholar
  48. 48.
    Huang, D., Zhao, Y.-J., Chen, D.-H., Shao, Y.-Z.: Electronic structure and magnetic couplings in anatase TiO2:V codoped with N, F, Cl. J. Phys. Condens. Matter 21, 125502 (2009)Google Scholar
  49. 49.
    Osorio-Gillen, J., Lany, S., Zunger, A.: Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Phys. Rev. Lett. 100, 036601 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    He, K.H., Zheng, G., Chen, G., et al.: Effects of single oxygen vacancy on electronic structure and ferromagnetism for V-doped TiO2. Sol. Stat. Comm. 144, 54–57 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Yildirim, O., Butterling, M., Cornelius, S., et al.: Ferromagnetism and structural defects in V-doped titanium dioxide. Phys. Status Solidi C 11, 1106–1109 (2014)CrossRefGoogle Scholar
  52. 52.
    Semisalova, A.S., Mikhailovsky, Y., Smekhova, A., et al.: Above room temperature ferromagnetism in Co- and V-doped TiO2—revealing the different contributions of defects and impurities. J. Supercond. Nov. Magn. 28, 805–811 (2015)Google Scholar
  53. 53.
    Coey, J.M.D., Wongsaprom, K., Alaria, J., Venkatesan, M.: Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D. Appl. Phys. 41, 134012 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Asoka-Kumar, P., Lynn, K.G.: Applications of positron annihilation spectroscopy. J. Phys. IV France 05, C1-15–C1-25 (1995)CrossRefGoogle Scholar
  55. 55.
    Gidley, D.W., Peng, H.-G., Vallery, R.S.: Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res. 36, 49–79 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    Puska, M.J., Corbel, C., Nieminen, R.M.: Positron trapping in semiconductors. Phys. Rev. B 41, 9980 (1990)ADSCrossRefGoogle Scholar
  57. 57.
    Schultz, P.J., Lynn, K.G.: Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 60, 701–779 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    Schultz, P.J., Massoumi, G.R., Simpson, P.J. (eds.): Positron Beams for Solids and Surfaces, Proceedings of the Fourth International Workshop on Slow-Positron Beam Techniques for Solids and Surfaces. American Institute of Physics, New York (1990)Google Scholar
  59. 59.
    Anwand, W., Brauer, G., Butterling, M., et al.: Design and construction of a slow positron beam for solid and surface investigations. Defect Diffus. Forum 331, 25–40 (2012)CrossRefGoogle Scholar
  60. 60.
    Butterling, M., Anwand, W., Cornelius, S., et al.: Optimization of growth parameters of TiO2 thin films using a slow positron beam. J. Phys.: Conf. Ser. 443, 012073 (2013)Google Scholar
  61. 61.
    Ogale, S.B.: Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010)CrossRefGoogle Scholar
  62. 62.
    Orlov, A.F., Balagurov, L.A., Kulemanov, I.V., et al.: Structure, electrical and magnetic properties, and the origin of room temperature ferromagnetism in the Mn-implanted Si. JETP 136, 703–711 (2009)Google Scholar
  63. 63.
    Fukumura, T., Yamada, Y., Ueno, K., et al.: Electron carrier-mediated room temperature ferromagnetism in anatase (Ti, Co)O2. SPIN 2, 123005 (2012)CrossRefGoogle Scholar
  64. 64.
    Özgür, Ü., Alivov, Y.I., Liu, C., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    Pan, F., Song, C., Liu, X.J., et al.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R. Rep. 62, 1–35 (2008)CrossRefGoogle Scholar
  67. 67.
    Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  68. 68.
    Sharma, P., Gupta, A., Rao, K.V., et al.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D.: Anisotropic ferromagnetism in substituted Zinc oxide. Phys. Rev. Lett. 93, 177206 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    Herng, T.S., Lau, S.P., Yu, S.F., et al.: Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phys. Lett. 90, 032509 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    Diaconu, M., Schmidt, H., Hochmuth, H., et al.: Room-temperature ferromagnetic Mn-alloyed ZnO films obtained by pulsed laser deposition. JMMM 307, 212–221 (2006)ADSCrossRefGoogle Scholar
  72. 72.
    Alaria, J., Bieber, H., Colis, S., et al.: Absence of ferromagnetism in Al-doped Zn0.9Co0.1O diluted magnetic semiconductors. Appl. Phys. Lett. 88, 112503 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    Lawes, G., Risbud, A.S., Ramirez, A.P., Seshadri, R.: Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys. Rev. B 71, 045201 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    Potzger, K., Zhou, S.: Non-DMS related ferromagnetism in transition metal doped zinc oxide. Phys. Stat. Solidi 246, 1147–1167 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    Lotin, A.A., Novodvorsky, O.A., Rylkov, V.V., et al.: Properties of Zn1- xCoxO films produced by pulsed laser deposition with fast particle separation. Semiconductors 48, 538–544 (2014)Google Scholar
  76. 76.
    Han, S.-J., Jang, T.-H., Kim, Y.B., et al.: Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction. Appl. Phys. Lett. 83, 920–922 (2003)ADSCrossRefGoogle Scholar
  77. 77.
    Kaspar, T.C., Droubay, T., Heald, S.M., et al.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77, 201303(R) (2008)ADSCrossRefGoogle Scholar
  78. 78.
    Mesquita, A., Rhodes, F.P., da Silva, R.T., et al.: Dynamics of the incorporation of Co into the wurtzite ZnO matrix and its magnetic properties. J. All. Comp. 637, 407–417 (2015)CrossRefGoogle Scholar
  79. 79.
    Straumal, B.B., Protasova, S.G., Mazilkin, A.A., et al.: Ferromagnetic properties of the Mn-doped nanograined ZnO films. J. Appl. Phys. 108, 073923 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    Straumal, B.B., Mazilkin, A.A., Protasova, S.G., et al.: Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO. Philos. Mag. 93, 1371–1383 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    Coey, J.M.D.: d0 ferromagnetism. Solid State Sci. 7, 660–667 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    Tietze, T., Gacic, M., Schütz, G., et al.: XMCD studies on Co and Li doped ZnO magnetic semiconductors. New J. Phys. 10, 055009 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    Straumal, B.B., Protasova, S.G., Mazilkin, A.A., et al.: Ferromagnetic behaviour of Fe-doped ZnO nanograined films. Beilstein J. Nanotechnol. 4, 361–369 (2013)CrossRefGoogle Scholar
  84. 84.
    Sundaresan, A., Bhargavi, R., Rangarajan, N., et al.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306(R) (2006)ADSCrossRefGoogle Scholar
  85. 85.
    Burova, L.I., Samoilenkov, S.V., Fonin, M., et al.: Room temperature ferromagnetic (Zn, Co)O epitaxial films obtained by low-temperature MOCVD process. Thin Solid Films 515, 8490–8494 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    Burova, L.I., Perov, N.S., Semisalova, A.S., et al.: Effect of the nanostructure on room temperature ferromagnetism and resistivity of undoped ZnO thin films grown by chemical vapor deposition. Thin Solid Films 520, 4580–4585 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    Kulbachinskii, V.A., Kytin, V.G., Reukova, O.V., et al.: Electron transport and low-temperature electrical and galvanomagnetic properties of zinc oxide and indium oxide films. Low. Temp. Phys. 41, 116–124 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    Gu, H., Zhang, W., Xu, Y., Yan, M.: Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl. Phys. Lett. 100, 202401 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    Li, G., Wang, H., Wang, Q., Zhao, Q., et al.: Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field. Nanoscale Res. Lett. 10, 112 (2015)ADSCrossRefGoogle Scholar
  90. 90.
    Wan, W., Huang, J., Zhu, L., et al.: Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm 15, 7887–7894 (2013)CrossRefGoogle Scholar
  91. 91.
    Chang, L.-T., Want, C.-Y., Tang, J., et al.: Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 14, 1823–1829 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    Singh, S.B., Wang, Y.-F., Shao, Y.-C., et al.: Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques. Nanoscale 6, 9166–9176 (2014)ADSCrossRefGoogle Scholar
  93. 93.
    Pal, B., Dhara, S., Giri, P.K., Sarkar, D.: Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route. J. All. Comp. 615, 378–385 (2014)CrossRefGoogle Scholar
  94. 94.
    Luo, X., Lee, W.-T., Xing, G., et al.: Ferromagnetic ordering in Mn-doped ZnO nanoparticles. Nanoscale Res. Lett. 9, 625 (2014)ADSCrossRefGoogle Scholar
  95. 95.
    Guo, T., Yao, M.-S., Lin, Y.-H., Nan, C.-W.: A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 17, 3551–3585 (2015)CrossRefGoogle Scholar
  96. 96.
    Wang, J., Hou, S., Chen, H., Xiang, L.: Defects-induced room temperature ferromagnetism in ZnO nanorods grown from ε-Zn(OH)2. J. Phys. Chem. C 118, 19469–19476 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. S. Semisalova
    • 1
    • 2
    • 3
  • A. Orlov
    • 4
  • A. Smekhova
    • 1
    • 5
  • E. Gan’shina
    • 1
  • N. Perov
    • 1
  • W. Anwand
    • 3
  • K. Potzger
    • 3
  • E. Lähderanta
    • 2
  • A. Granovsky
    • 1
    Email author
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Lappeenranta University of TechnologyLappeenrantaFinland
  3. 3.Helmholtz-Zentrum Dresden - RossendorfDresdenGermany
  4. 4.Federal State Research and Design Institute of Rare Metal IndustryMoscowRussia
  5. 5.Fakultät für Physik, ExperimentalphysikUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations