Skip to main content

Above Room Temperature Ferromagnetism in Dilute Magnetic Oxide Semiconductors

  • Chapter
  • First Online:
Book cover Novel Functional Magnetic Materials

Abstract

In this chapter, we will survey early and recent experimental results on magnetic properties of dilute magnetic oxide semiconductors, focusing on TiO2-δ:Co and TiO2-δ:V. Room temperature ferromagnetism was observed in both types of thin film samples fabricated by RF sputtering, but their magnetic properties appeared to be quite different. Magnetic moments in case of TiO2-δ:Co are mostly associated with local polarization of Co ions and induced defects. There is an evidence of intrinsic ferromagnetism in the case of low Co content (<1 at.%). Room temperature ferromagnetism was observed in TiO2-δ:V at V content from 3 up to 18 at.% in the whole resistivity range from 10−3 up to 106 Ω cm. Positron annihilation spectroscopy revealed a correlation between magnetization and concentration of the negatively charged defects in TiO2-δ:V thin films. The origin of room temperature ferromagnetism in these systems is discussed. Besides, the recent research findings in ZnO-based magnetic semiconductors are briefly discussed with focus on defect-induced ferromagnetism.

“Do not give up hope, maestro!”

Bulat Okudjava

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHE:

Anomalous Hall effect

DMO:

Dilute magnetic oxides

DMS:

Dilute magnetic semiconductors

EDX:

Energy dispersive X-ray analysis

MO:

Magneto-optical

PAS:

Positron annihilation spectroscopy

RF:

Radio frequency

SQUID:

Superconducting quantum interference device

TKE:

Transversal Kerr effect

TM:

Transition metal

XANES:

X-ray absorption near-edge structure

XMCD:

X-ray magnetic circular dichroism

XRD:

X-ray diffraction

ZFC/FC:

Zero field cooled/field cooled

References

  1. Dietl, T., Ohno, H.: Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014)

    Article  ADS  Google Scholar 

  2. Ohno, H.: A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010)

    Article  ADS  Google Scholar 

  3. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  ADS  Google Scholar 

  4. Olejnik, K., Owen, M.H.S., Novak, V., et al.: Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga, Mn)As: A surface oxide control study. Phys. Rev. B 78, 054403 (2008)

    Article  ADS  Google Scholar 

  5. Wang, M., Campion, R.P., Rushforth, A.W., et al.: Achieving high Curie temperature in (Ga, Mn)As. Appl. Phys. Lett. 93, 132103 (2008)

    Article  ADS  Google Scholar 

  6. Matsumoto, Y., Murakami, M., Shono, T., et al.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001)

    Article  ADS  Google Scholar 

  7. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)

    Article  ADS  Google Scholar 

  8. Rylkov, V.V., Gan’shina, E.A., Novodvorskii, O.A., et al.: Defect-induced high-temperature ferromagnetism in Si1-xMnx (x = 0.52–0.55) alloys. EPL 130, 57014 (2013)

    Article  ADS  Google Scholar 

  9. Coey, J.M.D., Stamenov, P., Gunning, R.D., et al.: Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010)

    Article  ADS  Google Scholar 

  10. Straumal, B.B., Mazilkin, A.A., Protasova, S.G., et al.: Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. Phys. Rev. B 79, 205206 (2009)

    Article  ADS  Google Scholar 

  11. Zhou, S.: Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation. Nucl. Instrum. Meth. Phys. Res. 326, 55–60 (2014)

    Article  ADS  Google Scholar 

  12. Dietl, T., Ohno, H., Matsukura, F., et al.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  13. Janisch, R., Spaldin, N.A.: Understanding ferromagnetism in Co-doped TiO2 anatase from first principles. Phys. Rev. B 73, 035201 (2006)

    Article  ADS  Google Scholar 

  14. Ivanov, V.A., Ugolkova, E.A., Pashkova, O.N., et al.: Ferromagnetism in dilute magnetic semiconductors and new materials for spintronics. J. Magn. Magn. Mater. 300, e32–e36 (2006)

    Article  ADS  Google Scholar 

  15. Calderon, M.J., Das Sarma, S.: Theory of carrier-mediated ferromagnetism in dilute magnetic oxides. Ann. Phys. 322, 2618–2634 (2007)

    Article  ADS  MATH  Google Scholar 

  16. Abraham, D.W., Frank, M.M., Guha, S.: Absence of magnetism in hafnium oxide films. Appl. Phys. Lett. 87, 252502 (2005)

    Article  ADS  Google Scholar 

  17. Fukumura, T., Toyosaki, H., Yamada, Y.: Magnetic oxide semiconductors. Semicond. Sci. Technol. 20, S103–S111 (2005)

    Article  ADS  Google Scholar 

  18. Pearton, S.J., Heo, W.H., Ivill, M., et al.: Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59–R74 (2004)

    Article  ADS  Google Scholar 

  19. Hong, N.H. (ed.): Magnetism in semiconducting oxides. Transworld Reseach Network, India (2007)

    Google Scholar 

  20. Griffin, K.A., Pakhomov, A.B., Wang, C.M., et al.: Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94, 157204 (2005)

    Article  ADS  Google Scholar 

  21. Orlov, A.F., Perov, N.S., Balagurov, L.A., et al.: Giant magnetic moments in oxide ferromagnetic semiconductors. JETP Lett. 86, 352–354 (2007)

    Article  ADS  Google Scholar 

  22. Belghazi, Y., Schmerber, G., Colis, S., et al.: Extrinsic origin of ferromagnetism in ZnO and Zn0.9Co0.1O magnetic semiconductor films prepared by sol–gel technique. Appl. Phys. Lett. 89, 122504 (2006)

    Article  ADS  Google Scholar 

  23. Ogale, S.B., Choudhary, R.J., Buban, J.P., et al.: High-temperature ferromagnetism with a giant magnetic moment in transparent Co doped SnO2–δ. Phys. Rev. Lett. 91, 077205 (2003)

    Article  ADS  Google Scholar 

  24. Hong, N.H., Sakai, J., Prellier, W., et al.: Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B 70, 195204 (2004)

    Article  ADS  Google Scholar 

  25. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  ADS  Google Scholar 

  26. He, J., Xu, S., Yoo, Y.K., et al.: Room temperature ferromagnetic n-type semiconductor in (In1−xFex)2O3−σ. Appl. Phys. Lett. 86, 052503 (2005)

    Article  ADS  Google Scholar 

  27. Pemmaraju, C.D., Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205 (2005)

    Article  ADS  Google Scholar 

  28. Hong, N.H., Sakai, J., Huong, N.T., Brize, V.: Room temperature ferromagnetism in laser ablated Ni-doped In2O3 thin film. Appl. Phys. Lett. 87, 102505 (2005)

    Article  ADS  Google Scholar 

  29. Chambers, S.A., Droubay, T., Wang, C.M., et al.: Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257–1259 (2003)

    Article  ADS  Google Scholar 

  30. Balagurov, L.A., Gan’shina, E.A., Klimonskii, S.O., et al.: Boundary conditions for the formation of a ferromagnetic phase during the deposition of Ti1-xCoxO2-δ thin films. Crystallogr. Rep. 50, 686–689 (2005)

    Article  ADS  Google Scholar 

  31. Suzuki, T., Souda, R.: TiO epitaxial film growth on MgO(001) and its surface structural analysis. Surf. Sci. 445, 506–511 (2000)

    Article  ADS  Google Scholar 

  32. Kim, J.-Y., Park, J.-H., Park, B.-G., et al.: Ferromagnetism induced by clustered Co in Co-doped anatase TiO2 thin films. Phys. Rev. Lett. 90, 017401 (2003)

    Article  ADS  Google Scholar 

  33. Seong, N.-J., Yoon, S.-G., Cho, C.-R.: Effects of Co-doping level on the microstructural and ferromagnetic properties of liquid-delivery metalorganic-chemical-vapor-deposited Ti1−xCoxO2 thin films. Appl. Phys. Lett. 81, 4209–4211 (2002)

    Article  ADS  Google Scholar 

  34. Fukumura, T., Toyosaki, H., Ueno, K., et al.: Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO2. New J. Phys. 10, 055018 (2008)

    Article  ADS  Google Scholar 

  35. Tiwari, A., Bhosle, V.M., Ramachandran, S., et al.: Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 88, 142511 (2006)

    Article  ADS  Google Scholar 

  36. Orlov, A.F., Balagurov, L.A., Kulemanov, I.V., et al.: Intrinsic ferromagnetism created by vacancy injection in a semiconductor oxide Ti1-xCoxO2-δ. Phys. Sol. Stat. 53, 482–484 (2011)

    Article  ADS  Google Scholar 

  37. Singh, V.R., Ishigami, K., Verma, V.K., et al.: Ferromagnetism of cobalt-doped anatase TiO2 studied by bulk- and surface-sensitive soft X-ray magnetic circular dichroism. Appl. Phys. Lett. 100, 242404 (2012)

    Article  ADS  Google Scholar 

  38. Fukumura, T., Yamada, Y., Tamura, K., et al.: Magneto-optical spectroscopy of anatase TiO2 doped with Co. Jap. J. Appl. Phys. 42, L105–L107 (2003)

    Article  ADS  Google Scholar 

  39. Toyosaki, H., Fukumura, T., Yamada, Y., Kawasaki, M.: Evolution of ferromagnetic circular dichroism coincident with magnetization and anomalous Hall effect in Co-doped rutile TiO2. Appl. Phys. Lett. 86, 182503 (2005)

    Article  ADS  Google Scholar 

  40. Weng, H., Dong, J., Fukumura, T., et al.: First principles investigation of the magnetic circular dichroism spectra of Co-doped anatase and rutile TiO2. Phys. Rev. B 73, 121201(R) (2006)

    Article  ADS  Google Scholar 

  41. Gan’shina, E.A., Granovsky, A.B., Orlov, A.F., et al.: Magneto-optical spectroscopy of diluted magnetic oxides TiO2−δ: Co. JMMM 321, 723–725 (2009)

    Article  ADS  Google Scholar 

  42. Weakliem, H.A.: Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals. J. Chem. Phys. 36, 2117–2140 (1962)

    Article  ADS  Google Scholar 

  43. Enomoto, M.: The O-Ti-V system (oxygen-titanium-vanadium). J. Phase. Equilibria 17, 539–545 (1995)

    Article  Google Scholar 

  44. Hai, N.N., Khoi, N.T., Vinh, P.V.: Preparation and magnetic properties of TiO2 doped with V, Mn, Co, La. J. Phys. Conf. Ser. 187, 012071 (2009)

    Article  ADS  Google Scholar 

  45. Lü, X., Li, J., Mou, X., et al.: Room-temperature ferromagnetism in Ti1-xVxO2 nanocrystals synthesized from an organic-free and water-soluble precursor. J. All. Comp. 499, 160–165 (2010)

    Article  Google Scholar 

  46. Orlov, A.F., Balagurov, L.A., Kulemanov, I.V., et al.: Magnetic and magneto-optical properties of Ti1-xVxO2-δ semiconductor oxide films: Room temperature ferromagnetism versus resistivity. SPIN 02, 1250011 (2012)

    Article  Google Scholar 

  47. Le Roy, D., Valloppilly, S., Skomski, R., et al.: Magnetism and structure of anatase (Ti1-xVx)O2 films. J. Appl. Phys. 111, 07C118 (2012)

    Google Scholar 

  48. Huang, D., Zhao, Y.-J., Chen, D.-H., Shao, Y.-Z.: Electronic structure and magnetic couplings in anatase TiO2:V codoped with N, F, Cl. J. Phys. Condens. Matter 21, 125502 (2009)

    Google Scholar 

  49. Osorio-Gillen, J., Lany, S., Zunger, A.: Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Phys. Rev. Lett. 100, 036601 (2008)

    Article  ADS  Google Scholar 

  50. He, K.H., Zheng, G., Chen, G., et al.: Effects of single oxygen vacancy on electronic structure and ferromagnetism for V-doped TiO2. Sol. Stat. Comm. 144, 54–57 (2007)

    Article  ADS  Google Scholar 

  51. Yildirim, O., Butterling, M., Cornelius, S., et al.: Ferromagnetism and structural defects in V-doped titanium dioxide. Phys. Status Solidi C 11, 1106–1109 (2014)

    Article  Google Scholar 

  52. Semisalova, A.S., Mikhailovsky, Y., Smekhova, A., et al.: Above room temperature ferromagnetism in Co- and V-doped TiO2—revealing the different contributions of defects and impurities. J. Supercond. Nov. Magn. 28, 805–811 (2015)

    Google Scholar 

  53. Coey, J.M.D., Wongsaprom, K., Alaria, J., Venkatesan, M.: Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D. Appl. Phys. 41, 134012 (2008)

    Article  ADS  Google Scholar 

  54. Asoka-Kumar, P., Lynn, K.G.: Applications of positron annihilation spectroscopy. J. Phys. IV France 05, C1-15–C1-25 (1995)

    Article  Google Scholar 

  55. Gidley, D.W., Peng, H.-G., Vallery, R.S.: Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res. 36, 49–79 (2006)

    Article  ADS  Google Scholar 

  56. Puska, M.J., Corbel, C., Nieminen, R.M.: Positron trapping in semiconductors. Phys. Rev. B 41, 9980 (1990)

    Article  ADS  Google Scholar 

  57. Schultz, P.J., Lynn, K.G.: Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 60, 701–779 (1988)

    Article  ADS  Google Scholar 

  58. Schultz, P.J., Massoumi, G.R., Simpson, P.J. (eds.): Positron Beams for Solids and Surfaces, Proceedings of the Fourth International Workshop on Slow-Positron Beam Techniques for Solids and Surfaces. American Institute of Physics, New York (1990)

    Google Scholar 

  59. Anwand, W., Brauer, G., Butterling, M., et al.: Design and construction of a slow positron beam for solid and surface investigations. Defect Diffus. Forum 331, 25–40 (2012)

    Article  Google Scholar 

  60. Butterling, M., Anwand, W., Cornelius, S., et al.: Optimization of growth parameters of TiO2 thin films using a slow positron beam. J. Phys.: Conf. Ser. 443, 012073 (2013)

    Google Scholar 

  61. Ogale, S.B.: Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010)

    Article  Google Scholar 

  62. Orlov, A.F., Balagurov, L.A., Kulemanov, I.V., et al.: Structure, electrical and magnetic properties, and the origin of room temperature ferromagnetism in the Mn-implanted Si. JETP 136, 703–711 (2009)

    Google Scholar 

  63. Fukumura, T., Yamada, Y., Ueno, K., et al.: Electron carrier-mediated room temperature ferromagnetism in anatase (Ti, Co)O2. SPIN 2, 123005 (2012)

    Article  Google Scholar 

  64. Özgür, Ü., Alivov, Y.I., Liu, C., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  65. Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  66. Pan, F., Song, C., Liu, X.J., et al.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R. Rep. 62, 1–35 (2008)

    Article  Google Scholar 

  67. Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001)

    Article  ADS  Google Scholar 

  68. Sharma, P., Gupta, A., Rao, K.V., et al.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003)

    Article  ADS  Google Scholar 

  69. Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D.: Anisotropic ferromagnetism in substituted Zinc oxide. Phys. Rev. Lett. 93, 177206 (2004)

    Article  ADS  Google Scholar 

  70. Herng, T.S., Lau, S.P., Yu, S.F., et al.: Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phys. Lett. 90, 032509 (2007)

    Article  ADS  Google Scholar 

  71. Diaconu, M., Schmidt, H., Hochmuth, H., et al.: Room-temperature ferromagnetic Mn-alloyed ZnO films obtained by pulsed laser deposition. JMMM 307, 212–221 (2006)

    Article  ADS  Google Scholar 

  72. Alaria, J., Bieber, H., Colis, S., et al.: Absence of ferromagnetism in Al-doped Zn0.9Co0.1O diluted magnetic semiconductors. Appl. Phys. Lett. 88, 112503 (2006)

    Article  ADS  Google Scholar 

  73. Lawes, G., Risbud, A.S., Ramirez, A.P., Seshadri, R.: Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys. Rev. B 71, 045201 (2005)

    Article  ADS  Google Scholar 

  74. Potzger, K., Zhou, S.: Non-DMS related ferromagnetism in transition metal doped zinc oxide. Phys. Stat. Solidi 246, 1147–1167 (2009)

    Article  ADS  Google Scholar 

  75. Lotin, A.A., Novodvorsky, O.A., Rylkov, V.V., et al.: Properties of Zn1- xCoxO films produced by pulsed laser deposition with fast particle separation. Semiconductors 48, 538–544 (2014)

    Google Scholar 

  76. Han, S.-J., Jang, T.-H., Kim, Y.B., et al.: Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction. Appl. Phys. Lett. 83, 920–922 (2003)

    Article  ADS  Google Scholar 

  77. Kaspar, T.C., Droubay, T., Heald, S.M., et al.: Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films. Phys. Rev. B 77, 201303(R) (2008)

    Article  ADS  Google Scholar 

  78. Mesquita, A., Rhodes, F.P., da Silva, R.T., et al.: Dynamics of the incorporation of Co into the wurtzite ZnO matrix and its magnetic properties. J. All. Comp. 637, 407–417 (2015)

    Article  Google Scholar 

  79. Straumal, B.B., Protasova, S.G., Mazilkin, A.A., et al.: Ferromagnetic properties of the Mn-doped nanograined ZnO films. J. Appl. Phys. 108, 073923 (2010)

    Article  ADS  Google Scholar 

  80. Straumal, B.B., Mazilkin, A.A., Protasova, S.G., et al.: Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO. Philos. Mag. 93, 1371–1383 (2013)

    Article  ADS  Google Scholar 

  81. Coey, J.M.D.: d0 ferromagnetism. Solid State Sci. 7, 660–667 (2005)

    Article  ADS  Google Scholar 

  82. Tietze, T., Gacic, M., Schütz, G., et al.: XMCD studies on Co and Li doped ZnO magnetic semiconductors. New J. Phys. 10, 055009 (2008)

    Article  ADS  Google Scholar 

  83. Straumal, B.B., Protasova, S.G., Mazilkin, A.A., et al.: Ferromagnetic behaviour of Fe-doped ZnO nanograined films. Beilstein J. Nanotechnol. 4, 361–369 (2013)

    Article  Google Scholar 

  84. Sundaresan, A., Bhargavi, R., Rangarajan, N., et al.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306(R) (2006)

    Article  ADS  Google Scholar 

  85. Burova, L.I., Samoilenkov, S.V., Fonin, M., et al.: Room temperature ferromagnetic (Zn, Co)O epitaxial films obtained by low-temperature MOCVD process. Thin Solid Films 515, 8490–8494 (2007)

    Article  ADS  Google Scholar 

  86. Burova, L.I., Perov, N.S., Semisalova, A.S., et al.: Effect of the nanostructure on room temperature ferromagnetism and resistivity of undoped ZnO thin films grown by chemical vapor deposition. Thin Solid Films 520, 4580–4585 (2012)

    Article  ADS  Google Scholar 

  87. Kulbachinskii, V.A., Kytin, V.G., Reukova, O.V., et al.: Electron transport and low-temperature electrical and galvanomagnetic properties of zinc oxide and indium oxide films. Low. Temp. Phys. 41, 116–124 (2015)

    Article  ADS  Google Scholar 

  88. Gu, H., Zhang, W., Xu, Y., Yan, M.: Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl. Phys. Lett. 100, 202401 (2012)

    Article  ADS  Google Scholar 

  89. Li, G., Wang, H., Wang, Q., Zhao, Q., et al.: Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field. Nanoscale Res. Lett. 10, 112 (2015)

    Article  ADS  Google Scholar 

  90. Wan, W., Huang, J., Zhu, L., et al.: Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm 15, 7887–7894 (2013)

    Article  Google Scholar 

  91. Chang, L.-T., Want, C.-Y., Tang, J., et al.: Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 14, 1823–1829 (2014)

    Article  ADS  Google Scholar 

  92. Singh, S.B., Wang, Y.-F., Shao, Y.-C., et al.: Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques. Nanoscale 6, 9166–9176 (2014)

    Article  ADS  Google Scholar 

  93. Pal, B., Dhara, S., Giri, P.K., Sarkar, D.: Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route. J. All. Comp. 615, 378–385 (2014)

    Article  Google Scholar 

  94. Luo, X., Lee, W.-T., Xing, G., et al.: Ferromagnetic ordering in Mn-doped ZnO nanoparticles. Nanoscale Res. Lett. 9, 625 (2014)

    Article  ADS  Google Scholar 

  95. Guo, T., Yao, M.-S., Lin, Y.-H., Nan, C.-W.: A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 17, 3551–3585 (2015)

    Article  Google Scholar 

  96. Wang, J., Hou, S., Chen, H., Xiang, L.: Defects-induced room temperature ferromagnetism in ZnO nanorods grown from ε-Zn(OH)2. J. Phys. Chem. C 118, 19469–19476 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Initiative and Networking Fund of the German Helmholtz Association, Helmholtz-Russia Joint Research Group HRJRG-314, and the Russian Foundation for Basic Research, RFBR #12-02-91321-SIG_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Granovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Semisalova, A.S. et al. (2016). Above Room Temperature Ferromagnetism in Dilute Magnetic Oxide Semiconductors. In: Zhukov, A. (eds) Novel Functional Magnetic Materials. Springer Series in Materials Science, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-26106-5_5

Download citation

Publish with us

Policies and ethics