Heusler Alloy Ribbons: Structure, Martensitic Transformation, Magnetic Transitions, and Exchange Bias Effect

  • L. González-LegarretaEmail author
  • R. Caballero-Flores
  • W. O. Rosa
  • Mihail Ipatov
  • L. Escoda
  • J. J. Suñol
  • V. M. Prida
  • J. González
  • B. HernandoEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)


We outline the microstructure, crystal structure, first-order martensitic transformation, and magnetic properties observed in selected Heusler Ni–Mn–Z (Z = In, Sn) alloys produced in ribbon shape by melt spinning. Along with a detailed description of Heusler alloy ribbon production and structural, calorimetric, and magnetic characterization, we highlight various characteristic features associated with the disorder influence on the magnetostructural martensitic transformation related to phase coexistence, metastability, supercooling, and superheating as a consequence of its first-order nature. Magnetic field and annealing effect on the martensitic phase transformation are also analyzed. The understanding of that transition process helps us to explain the exchange bias effect observed in the martensite phase of Ni–Mn–In and Ni–Mn–Sn systems.


Heusler alloys Martensitic phase transformation Exchange bias Melt spun ribbon 



Financial support under Spanish MINECO research projects MAT2013-47231-C2-1-P, MAT2013-47231-C2-2-P, and MAT2013-48054-C2-2-R is acknowledged. Scientific support from the University of Oviedo SCT is also recognized.


  1. 1.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Half-metallic ferromagnets and their magneto-optical properties. J. Appl. Phys. 55, 2151 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Kübler, J.: First principle theory of metallic magnetism. Physica B 127, 257–263 (1984)Google Scholar
  4. 4.
    Fang, C.M., de Wijs, G.A., de Groot, R.A.: Spin-polarization in half-metals. J. Appl. Phys. 91, 8340 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Hanssen, K.E.H.M., Mijnarends, P.E.: Positron-annihilation study of the half-metallic ferromagnet NiMnSb: theory. Phys. Rev. B 34, 5009 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    Galanakis, I., Ostanin, S., Alouani, M., Dreysse, H., Wills, J.M.: Ab initio ground state and L2,3 x-ray magnetic circular dichroism of Mn-based Heusler alloys. Phys. Rev. B 61, 4093 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Kang, J.-S., Park, J.-G., Olson, C.G., Youn, S.J., Min, B.I.: Valence band and Sb 4d core level photoemission of the XMnSb-type Heusler compounds (X = Pt, Pd, Ni). J. Phys. Condens. Matter 7, 3789 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Kang, J.-S., Hong, S.H., Jung, S.W., Lee, Y.P., Park, J.-G., Olson, C.G., Youn, S.J., Min, B.I.: Electronic structures of the half-metallic Heusler alloys: NiMnSb and PtMnSb. Solid State Commun. 88, 635–657 (1993)CrossRefGoogle Scholar
  9. 9.
    Galanakis, I.: Surface properties of the half-and full-Heusler alloys. J. Phys. Condens. Matter 14, 6329 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, B.G.: Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B. 67, 172411 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Xie, W.H., Xu, Y.Q., Liu, B.G., Pettifor, D.G.: Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett. 91, 037204 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Galanakis, I.: Surface half-metallicity of CrAs in the zinc-blende structure. Phys. Rev. B 66, 012406 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Pickett, W.E., Singh, D.J.: Electronic structure and half-metallic transport in the La1 − xCaxMnO3 system. Phys. Rev. B 53, 1146 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Singh, D.J., Pickett, W.E.: Pseudogaps: Jahn-Teller distortions, and magnetic order in manganite perovskites. Phys. Rev. B 57, 88 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Schwarz, K.: CrO2 predicted as a half-metallic ferromagnet. J. Phys. F. Met. Phys. 16, L211 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    van Lueken, H., de Groot, R.A.: Electronic structure of the chromium dioxide (001) surface. Phys. Rev. B 51, 7176 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Korotin, M.A., Anisimov, V.I., Khomskii, D.I., Sawatzky, G.A.: CrO2: a self-doped double exchange ferromagnet. Phys. Rev. Lett. 80, 4305 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Lewis, S.P., Allen, P.B., Sasaki, T.: Band structure and transport properties of CrO2. Phys. Rev. B 55, 10253 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    de Groot, R.A., Buschow, K.H.J.: Recent developments in half-metallic magnetism. J. Magn. Magn. Mater. 54–57, 1377 (1986)CrossRefGoogle Scholar
  23. 23.
    Penicaud, M., Silberchoit, B., Sommers, C.B., Kübler, J.: Calculated electronic band structure and magnetic moments of ferrites. J. Magn. Magn. Mater. 103, 212–220 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    Irkhin, V.Y., Katsnelson, M.I.: Half-metallic ferromagnets. Phys. Usp. 37, 659 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Mazin, I.I.: Robust half metallicity in FexCo1 − xS2. Appl. Phys. Lett. 77, 3000 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Webster, P.J., Ziebeck, K.R.A.: Alloys and compounds of d-elements with main group elements. Part 2. In: Wijn, H.R.J. (ed.) Landolt-Börnstein, New Series, Group III (Vol 19) Pt.c, pp. 75–184. Springer, Berlin (1988)Google Scholar
  27. 27.
    Ziebeck, K.R.A., Neumann, K.U.: Magnetic properties of metals. In: Wijn, H.R.J. (ed.) Landolt-Börnstein, New Series, Group III (vol 32/c), pp. 64–414. Springer, Berlin (2001)Google Scholar
  28. 28.
    Stadler, S., Khan, M., Mitchell, J., Ali, N., Gomes, A.M., Dubenko, I., Takeuchi, A.Y., Guimarães, A.P.: Magnetocaloric properties of Ni2Mn1 − xCuxGa. Appl. Phys. Lett. 88, 192511 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Krenke, T., Duman, E.M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Gu, B.X., Du, Y.W.: Low-field inverse magnetocaloric effect in Ni50 − xMn39 + xSn11 Heusler alloys. Appl. Phys. Lett. 90, 042507 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Sánchez Llamazares, Y.W., Hernando, B., Prida, V.M., García, C., González, J., Varga, R., Ross, C.A.: Magnetic field influence on the structural transformation in ferromagnetic shape memory alloy Mn50Ni40In10 melt spun ribbons. J. Appl. Phys. 105, 07A945 (2009)CrossRefGoogle Scholar
  32. 32.
    Wang, B.M., Wang, L., Liu, Y., Zhao, B.C., Zhao, Y., Yang, Y., Zhang, H.: Strong thermal-history-dependent magnetoresistance behavior in Ni49.5Mn34.5In16. J. Appl. Phys. 106, 063909 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Ma, S.C., Xuan, H.C., Zhang, C.L., Wang, L.Y., Cao, Q.Q., Wang, D.H., Du, Y.W.: Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni–Mn–Co–Sn alloy. Appl. Phys. Lett. 97, 052506 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Umetsu, R.Y., Ito, K., Ito, W., Koyama, K., Kanomata, T., Ishida, K., Kainuma, R.: Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy. J. Alloys Compd. 509, 1389–1393 (2011)CrossRefGoogle Scholar
  35. 35.
    Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., Du, Y.W.: The martensitic transformation and the magnetocaloric effect in Ni50 − xMn38 + xIn12 alloys. Solid State Commun. 146, 124–127 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Ito, W., Imano, Y., Kainuma, R., Sutou, Y., Oikawa, K., Ishida, K.: Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall. Mater. Trans. A 38, 759–766 (2007)CrossRefGoogle Scholar
  37. 37.
    Hernando, B., Sánchez Llamazares, J.L., Prida, V.M., Baldomir, D., Serantes, D., Ilyn, M., González, J.: Magnetocaloric effect in preferentially textured Mn50Ni40In10 melt spun ribbons. Appl. Phys. Lett. 94, 222502 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X.: Large magnetoresistance in single-crystalline Ni50 Mn50 − xInx alloys (x = 14 − 16) upon martensitic transformation. Appl. Phys. Lett. 89, 162503 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Coll, R., Escoda, L., Saurina, L., Sánchez-Llamazares, J.L., Hernando, B., Suñol, J.J.: Martensitic transformation in Mn-Ni-Sn Heusler alloys. J. Therm. Anal. Calorim. 99, 905–909 (2010)CrossRefGoogle Scholar
  40. 40.
    Khovaylo, V.V., Rodionova, V.V., Shevyrtalov, S.N., Novosad, V.: Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds. Phys. Status Solidi B 251, 2104–2113 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Schlagel, D.L., McCallum, R.W., Lograsso, T.A.: Influence of solidification structure on the magnetic properties of Ni-Mn-Sn Heusler alloys. J. Alloys Compd. 463, 38–46 (2008)CrossRefGoogle Scholar
  42. 42.
    Moya, X., Mañosa, L., Planes, A., Krenke, T., Acet, M., Wassermann, E.F.: Martensitic transition and magnetic properties in Ni-Mn-X alloys. Mater. Sci. Eng. A 438–440, 911–915 (2006)CrossRefGoogle Scholar
  43. 43.
    Krenke, T., Duman, E., Acet, M., Moya, X., Mañosa, L., Planes, A.: Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 102, 033903 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Chen, L., Hu, F.X., Wang, J., Shen, J., Sun, J.R., Shen, B.G., Yin, J.H., Pan, L.Q., Huang, Q.Z.: Effect of post-annealing on martensitic transformation and magnetocaloric effect in Ni45Co5Mn36.7In13.3 alloys. J. Appl. Phys. 109, 07A939 (2011)Google Scholar
  45. 45.
    Sánchez-Alarcos, V., Recarte, V., Pérez-Landazábal, J.L., Gómez-Polo, C., Rodríguez-Velamazán, J.A.: Role of magnetism on martensitic transformation in Ni-Mn based magnetic shape memory alloys. Acta Mater. 60, 459–468 (2012)CrossRefGoogle Scholar
  46. 46.
    Ishikawa, H., Umetsu, R.Y., Kobayashi, K., Fujita, A., Kainuma, R., Ishida, K.: Atomic ordering and magnetic properties in Ni2Mn(GaxAl1-x) Heusler alloys. Acta Mater. 56, 4789–4797 (2008)CrossRefGoogle Scholar
  47. 47.
    Ito, W., Nagasato, M., Umetsu, R.Y., Kainuma, R., Kanomata, T., Ishida, K.: Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys. Appl. Phys. Lett. 93, 232503 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Recarte, V., Pérez-Landazábal, J.L., Sánchez-Alarcos, V.: Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni-Mn-In metamagnetic shape memory alloy. J. Alloys Compd. 536S, S308–S311 (2012)CrossRefGoogle Scholar
  49. 49.
    Zheng, H.X., Xia, M.X., Liu, J., Huang, Y.L., Li, J.G.: Martensitic transformation of (Ni55.3Fe17.6Ga27.1)100-xCox magnetic shape memory alloys. Acta Mater. 53, 5125–5129 (2005)CrossRefGoogle Scholar
  50. 50.
    Zheng, H.X., Wu, D., Xue, S., Frenzel, J., Eggeler, G., Zhai, Q.: Martensitic transformation in rapidly solidified Heusler Ni49mn39Sn12 alloys. Acta Mater. 59, 5692–5699 (2011)CrossRefGoogle Scholar
  51. 51.
    Zhao, X.G., Hsieh, C.C., Lai, J.G., Cheng, X.J., Chang, W.C., Cui, W.B., et al.: Scr. Mater. 63, 250 (2005)CrossRefGoogle Scholar
  52. 52.
    Santos, J.D., Sánchez, T., Álvarez, P., Sánchez, M.L., Sánchez, M.L., Sánchez Llamazares, J.L., Hernando, B.: Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. Appl. Phys. Lett. 103, 07B326 (2008)Google Scholar
  53. 53.
    Xuan, H.C., Deng, Y., Wang, D.H., Zhang, C.L., Han, Z.D., Du, Y.W.: Effect of the annealing on the martensitic transformation and magnetoresistance in Ni-Mn-Sn ribbons. J. Phys. D. Appl. Phys. 41, 215002 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Escoda, L., Varga, R., Baldomir, D., Serantes, D.: Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.1 ribbons. Appl. Phys. Lett. 92, 042504 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Sánchez, M.L., Escoda, L., Suñol, J.J., Varga, R., García, C., González, J.: Grain oriented NiMnSn and NiMnIn Heusler alloy ribbons produced by melt spinning: martensitic transformation and magnetic properties. J. Magn. Magn. Mater. 321, 763–768 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Sánchez Llamazares, J.L., Sánchez, T., Santos, J.D., Pérez, M.J., Sánchez, M.L., Hernando, B., Escoda, L.L., Suñol, J.J., Varga, R.: Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl. Phys. Lett. 92, 012513 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Wang, W., Yu, J., Zhai, Q., Luo, Z., Zheng, H.: Origin of retarded martensitic transformation in Heusler Ni-Mn-Sn melt-spun ribbons. Intermetallics 42, 126–129 (2013)CrossRefGoogle Scholar
  58. 58.
    Esakki, M.S., Rama Rao, N.V., Maniel Raja, M., Raj Kumar, D.M., Mohan Radheep, D., Arumugan, S.: Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50-xMn37 + xSn13 Heusler alloys. J. Phys. D. Appl. Phys. 43, 425002 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Wang, C., Meyer, J., Teichert, N., Auge, A., Rausch, E., Balke, B., Hütten, A., Fecher, G.H., Felser, C.: Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vacuum Sci. Tech. B. 32, 020802 (2014)CrossRefGoogle Scholar
  60. 60.
    Gaitzsch, U., Drache, J., McDonald, K., Müllner, P., Lindquist, P.: Obtaining of Ni-Mn-Ga magnetic shape memory alloy by annealing electrochemically deposited Ga/Mn/Ni layers. Thin Solid Films 522, 171–174 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    Babita, I., Gopalan, L., Rajasekhar, M., Ram, S.: Studies on ordering temperature and martensite stabilization in Ni55Mn20-xGa25 + x alloys. J. Alloys Compd. 475, 276–280 (2009)CrossRefGoogle Scholar
  62. 62.
    Prasad, R.V.S., Srinivas, M., Manivel Raja, M., Phanikumar, G.: Microstructure and magnetic properties of Ni2(Mn, Fe)Ga Heusler alloys rapidly solidified by melt spinning. Metall. Mater. Trans. A 45A, 2161–2170 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    Liu, J., Woodcock, T.G., Scheerbaum, N., Gutfleisch, O.: Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons. Acta Mater. 57, 4911–4920 (2009)CrossRefGoogle Scholar
  64. 64.
    Kreissl, M., Kanomata, T., Matsumoto, M., Neumann, K.U., Ouladdiaf, B., Stephens, T., Ziebeck, K.R.A.: The influence of atomic order and residual strain on the magnetic and structural properties of Ni2MnGa. J. Magn. Magn. Mater. 272, 2033–2034 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    Yu, S.Y., Hu, S.J., Kang, S.S., Gu, A.J.: Martensitic transformation in Ni-rich Ni55Mn25In20 Heusler alloy: Experiment and first-principles calculations. J. Alloys Compd. 633, 18–21 (2015)CrossRefGoogle Scholar
  66. 66.
    Rama Rao, N.V., Gopalan, R., Manivel Raja, M., Arout Chelvane, J., Majumdar, B., Chandrasekaran, V.: Magneto-structural transformation studies in melt-spun Ni-Mn-Ga ribbons. Scr. Mater. 56, 405–408 (2007)CrossRefGoogle Scholar
  67. 67.
    Cai, W., Feng, Y., Sui, F.H., Gao, Z.Y., Dong, G.F.: Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons. Scr. Mater. 58, 830–833 (2008)CrossRefGoogle Scholar
  68. 68.
    Albertini, F., Besseghini, S., Paoluzi, A., Pareti, L., Pasquale, M., Passaretti, F., Sasso, C.P., Stantero, A., Villa, E.: Structural, magnetic and anisotropic properties of Ni2MnGa melt-spun ribbons. J. Magn. Magn. Mater. 1421, 242–245 (2002)Google Scholar
  69. 69.
    Quintana-Nedelcos, A., Sánchez-Llamazares, J.L., Ríos-Jara, D., Lara-Rodríguez, A.G., García-Fernández, T.: Effect of quenching rate on the average grain size and martensitic transformation temperature in rapidly solidified polycrystalline Ni50Mn37Sn13 alloy ribbons. Phys. Status Solidi A 210, 2159–2165 (2013)CrossRefGoogle Scholar
  70. 70.
    Moya, X., Mañosa, L., Planes, A., Krenke, T., Duman, E., Acet, M., Wassermann, E.F.: Calorimetric study of the inverse magnetic effect in ferromagnetic Ni-Mn-Sn. J. Magn. Magn. Mater. 316, e572–e574 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    Dubenko, I., Samanta, T., Kumar, P.A., Kazakov, A., Prudnikov, V., Stadler, S., Granovsky, A., Zhukov, A., Ali, N.: Magnetocaloric effect and multifunctional properties of Ni-Mn-Sn Heusler alloys. J. Magn. Magn. Mater. 324, 3530–3534 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    Hu, F.X., Wang, J., Chen, L., Zhao, J.L., Sun, J.R., Shen, B.G.: Effect of the introduction of H atoms on magnetic entropy change in metamagnetic Heusler alloys Ni-Mn-In. Appl. Phys. Lett. 95, 112503 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    Bachaga, T., Daly, R., Khitouni, M., Escoda, L., Saurina, J., Suñol, J.J.: Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler alloy ribbons. Entropy 17, 646–657 (2015)ADSCrossRefGoogle Scholar
  74. 74.
    González-Legarreta, L., Rosa, W.O., García, J., Ipatov, M., Nazmunnahar, M., Escoda, L., Suñol, J.J., Prida, V.M., Somer, R.L., González, J., Leoni, M., Hernando, B.: Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.6In11.5 alloy ribbons. J Alloys Compd. 582, 588–593 (2014)CrossRefGoogle Scholar
  75. 75.
    Comtesse, D., Gruner, M.E., Ogura, M., Sokolovskiy, V.V., Buchelnikov, V.D., Grünebohm, A., Arróyave, R., Singh, N., Gottschall, T., Gutfleisch, O., Chernenko, V.A., Albertini, F., Fähler, S., Entel, P.: First-principles calculation of the instability leading to giant inverse magnetocaloric effects. Phys. Rev. B 89, 184403 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    Planes, A., Mañosa, L., Acet, M.: Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter. 21, 233201 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni−Mn−In alloys. Phys. Rev. B 73, 174413 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26, 622 (2003)CrossRefGoogle Scholar
  79. 79.
    Yan, J.L., Li, Z.Z., Chen, X., Zhou, K.W., Shen, S.X., Zhou, H.B.: Martensitic transition and magnetocaloric properties in Ni45Mn44− xFexSn11 alloys. J. Alloy Compd. 506, 516 (2010)CrossRefGoogle Scholar
  80. 80.
    Chatterjee, S., Giri, S., De, S.K., Majumdar, S.: Giant magneto-caloric effect near room temperature in Ni–Mn–Sn–Ga alloys. J. Alloy Compd. 503, 273 (2010)CrossRefGoogle Scholar
  81. 81.
    Yu, H.J., Fu, H., Zeng, Z.M., Sun, J.X., Wang, Z.G., Zhou, W.L., Zu, X.T.: Phase transformations and magnetocaloric effect in Ni–Fe–Ga ferromagnetic shape memory alloy. J. Alloy Compd. 477, 732 (2009)CrossRefGoogle Scholar
  82. 82.
    Sasıoglu, E., Sandratskii, L.M., Bruno, P.: First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb). Phys. Rev. B 70, 024427 (2004)ADSCrossRefGoogle Scholar
  83. 83.
    Tan, C.L., Huang, Y.W., Tian, X.H., Jiang, J.X., Cai, W.: Origin of magnetic properties and martensitic transformation of Ni-Mn-In magnetic shape memory alloys. Appl. Phys. Lett. 100, 132402 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    Reichl, L.E.: A modern course in statistical physics, 2nd edn. John Wiley, New York (1998)zbMATHGoogle Scholar
  85. 85.
    Mukherjee, T., Michalski, S., Skomski, R., Sellmyer, D.J., Binek, C.: Overcoming the spin-multiplicity limit of entropy by means of lattice degrees of freedom: A minimal model. Phys. Rev. B 83, 214413 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    Pecharsky, V.K., Gschneidner Jr., K.A.: Some common misconceptions concerning magnetic refrigerant materials. J. Appl. Phys. 90, 4614 (2001)ADSCrossRefGoogle Scholar
  87. 87.
    Pecharsky, V.K., Gschneidner Jr., K.A., Pecharsky, A.O., Tishin, A.M.: Thermodynamics of the magnetocaloric effect. Phys. Rev. B 64, 144406 (2001)ADSCrossRefGoogle Scholar
  88. 88.
    Imry, Y., Wortis, M.: Influence of quenched impurities on first-order phase transitions. Phys. Rev. B 19, 3580 (1979)ADSCrossRefGoogle Scholar
  89. 89.
    Caballero-Flores, R., Sánchez, T., Rosa, W.O., García, J., González-Legarreta, L., Serantes, D., Prida, V.M., Escoda, L., Suñol, J.J., Hernando, B.: On tuning the magnetocaloric effect in Ni–Mn–In Heusler alloy ribbons with thermal treatment. J. Alloy. Compd. 545, 216 (2012)CrossRefGoogle Scholar
  90. 90.
    Yeomans, J.M.: Statistical mechanics of phase transitions. Claredon, Oxford (1992)Google Scholar
  91. 91.
    Roy, S.B.: First order magneto-structural phase transition and associated multi-functional properties in magnetic solids. J. Phys. Condens. Matter. 25, 183201 (2013)ADSCrossRefGoogle Scholar
  92. 92.
    Caballero-Flores, R., González-Legarreta, L., Rosa, W.O., Sánchez, T., Prida, V.M., Escoda, L., Suñol, J.J., Batdalov, A.B., Aliev, A.M., Koledov, V.V., Shavrov, V.G., Hernando, B.: Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons. J. Alloy Compd. 629, 332 (2015)CrossRefGoogle Scholar
  93. 93.
    Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni − Mn − Sn alloys. Phys. Rev. B 72, 014412 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    Shamberger, P.J., Ohuchi, F.S.: Hysteresis of the martensitic phase transition in magnetocaloric-effect Ni-Mn-Sn alloys. Phys. Rev. B 79, 144407 (2009)ADSCrossRefGoogle Scholar
  95. 95.
    Hopkinson, J.: Magnetic properties of alloys of nickel and iron. Proc. R. Soc. A 48, 1 (1890)CrossRefGoogle Scholar
  96. 96.
    Sólyom, J.: Fundamentals of the physics of solids, 1st edn. Springer, Berlin (2007)Google Scholar
  97. 97.
    Prudnikov, V.N., Kazakov, A.P., Titov, I.S., Kovarskii, Y.N., Perov, N.S., Granovsky, A.B., Dubenko, I., Pathak, A.K., Ali, N., Gonzalez, J.: Quasi-diamagnetism and exchange anisotropy in Ni-Mn-In-Co Heusler alloys. Phys. Solid State 53, 490 (2011)ADSCrossRefGoogle Scholar
  98. 98.
    de Oliveira, N.A., von Ranke, P.J.: Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Buchelnikov, V.D., Entel, P., Taskaev, S.V., Sokolovskiy, V.V., Hucht, A., Ogura, M., Akai, H., Gruner, M.E., Nayak, S.K.: Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn, Sb). Phys. Rev. B 78, 184427 (2008)ADSCrossRefGoogle Scholar
  100. 100.
    Wang, B.M., Liu, Y., Wang, L., Huang, S.L., Zhao, Y., Yang, Y., Zhang, H.: Exchange bias and its training effect in the martensitic state of bulk polycrystalline Ni49.5Mn34.5In16. J. Appl. Phys. 104, 043916 (2008)ADSCrossRefGoogle Scholar
  101. 101.
    Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias in bulk Mn rich Ni-Mn-Sn Heusler alloys. J. Appl. Phys. 102, 113914 (2007)ADSCrossRefGoogle Scholar
  102. 102.
    Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias behavior in Ni-Mn-Sb Heusler alloys. Appl. Phys. Lett. 91, 072510 (2007)ADSCrossRefGoogle Scholar
  103. 103.
    Jing, C., Chen, J., Li, Z., Qiao, Y., Kang, B., Cao, S., Zhang, J.: Exchange bias behavior and inverse magnetocaloric effect in Ni50Mn35In15 Heusler alloy. J. Alloy Compd. 475, 1–4 (2009)CrossRefGoogle Scholar
  104. 104.
    Wang, B.M., Liu, Y., Ren, P., Xia, B., Ruan, K.B., Yi, J.B., Ding, J., Li, X.G.: Large exchange bias after zero-field cooling from an unmagnetized state. Phys. Rev. Lett. 106, 077203 (2011)ADSCrossRefGoogle Scholar
  105. 105.
    Machavarapu, R., Jakob, G.: Exchange bias effect in the martensitic state of Ni-Co-Mn-Sn film. Appl. Phys. Lett. 102, 232406 (2013)ADSCrossRefGoogle Scholar
  106. 106.
    Acet, M., Mañosa, L., Planes, A.: Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Buschow, K.H.J. (ed.) Handbook of magnetic materials, 19th edn, p. 231. Elsevier, Amsterdam (2011)Google Scholar
  107. 107.
    Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999)ADSCrossRefGoogle Scholar
  108. 108.
    Wang, B.M., Liu, Y., Xia, B., Ren, P., Wang, L.: Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni-Mn-Sn alloys. J. Appl. Phys. 111, 043912 (2012)ADSCrossRefGoogle Scholar
  109. 109.
    Singh, R., Ingale, B., Varga, L.K., Khovaylo, V.V., Chatterjee, R.: Large exchange-bias in Ni55Mn19Al24Si2 polycrystalline ribbons. Physica B 448, 143–146 (2014)ADSCrossRefGoogle Scholar
  110. 110.
    Bhatti, K.P., El-Khatib, S., Srivastava, V., James, R.D., Leighton, C.: Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50-xCoxMn40Sn10 alloys. Phys. Rev. B 85, 134450 (2012)ADSCrossRefGoogle Scholar
  111. 111.
    Cai, J.W., Liu, K., Chien, C.L.: Exchange coupling in the paramagnetic state. Phys. Rev. B 60, 72 (1999)ADSCrossRefGoogle Scholar
  112. 112.
    Leighton, C., Fitzsimmons, M.R., Hoffmann, A., Dura, J., Majkrzak, C.F., Lund, M.S., Schuller, I.K.: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65, 064403 (2002)ADSCrossRefGoogle Scholar
  113. 113.
    Li, Z., Chao, J., Chen, J., Yuan, S., Cao, S., Zhang, J.: Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. App. Phys. Lett. 91, 112505 (2007)ADSCrossRefGoogle Scholar
  114. 114.
    Sánchez-Llamazares, J.L., Flores-Zúñiga, H., Ríos-Jara, D., Sánchez-Valdes, C.F., García-Fernández, T., Ross, C.A., García, C.: Structural and magnetic characterization of the intermartensitic phase transition in NiMnSn Heusler alloy ribbons. J. Appl. Phys. 113, 17948 (2013)Google Scholar
  115. 115.
    Ray, M.K., Bagani, K., Banerjee, S.: Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2 + xMn1.4-xSn0.6 alloy. J. Alloy Compd. 600, 55–59 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • L. González-Legarreta
    • 1
    Email author
  • R. Caballero-Flores
    • 1
  • W. O. Rosa
    • 2
  • Mihail Ipatov
    • 3
  • L. Escoda
    • 4
  • J. J. Suñol
    • 4
  • V. M. Prida
    • 1
  • J. González
    • 3
  • B. Hernando
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of OviedoOviedoSpain
  2. 2.Centro Brasileiro de Pesquisas FísicasUrcaBrazil
  3. 3.Department of Materials PhysicsUniversity of the Basque CountrySan SebastiánSpain
  4. 4.Girona University, Campus MontiliviGironaSpain

Personalised recommendations