Magnetic, Magnetocaloric, Magnetotransport, and Magneto-optical Properties of Ni–Mn–In-Based Heusler Alloys: Bulk, Ribbons, and Microwires

  • I. DubenkoEmail author
  • N. Ali
  • S. Stadler
  • Arcady Zhukov
  • Valentina Zhukova
  • B. Hernando
  • V. Prida
  • V. Prudnikov
  • E. Gan’shina
  • A. Granovsky
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)


In this review, we will survey recent experimental results on magnetic, magnetocaloric, magnetotransport, and magneto-optical properties of Ni–Mn–In-based Heusler alloys in bulk polycrystalline samples, melt-spun ribbons, and glass-coated microwires. These ternary Ni–Mn–In and doped, quaternary alloys comprise a novel class of multifunctional magnetic materials with exceptional properties related to the magnetostructural martensitic transformation. We will focus on recent developments that have led to a better understanding of properties that are promising for applications, possible routes for improvements, and the identification of unsolved problems.


Heusler alloys Magnetocaloric effect Martensitic transition Ribbons Microwires Magnetotransport properties Magnetooptics 



Martensitic transition


Magnetostructural transition






Austenitic phase


Martensitic phase


Anomalous Hall effect






Transverse Kerr effect


Spin–orbit interaction



This work was supported by the Office of Basic Energy Sciences, Material Science Division of the US Department of Energy (DOE, Grant No. DE-FG02-06ER46291 (SIU) and DE-FG02-13ER46946 (LSU)), by the Russian Foundation for Basic Research (MSU), by the Spanish MINECO, and by the projects MAT2013-48054-C2-2-R and MAT2013-4731-C2-1-P.


  1. 1.
    Graf, T., Parkin, S., Felser, C.: Heusler compounds – a material class with exceptional properties. IEEE Trans. Magn. 47, 367–372 (2011)CrossRefGoogle Scholar
  2. 2.
    Krenke, T., Acet, M., Wassermann, E.F., Moya, X., et al.: Ferromagnetism in the austenitic and martensitic states of Ni−Mn−In alloys. Phys. Rev. B 73, 174413–10 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Kudryavtsev, Y.V., Lee, Y.P., Rhee, J.Y.: Dependence of the optical and magneto-optical properties and electronic structures on the atomic order in Ni2MnIn Heusler alloys. Phys. Rev. B 69, 195104–195109 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Brown, P.J., Gandy, A.P., Ishida, K., et al.: The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J. Phys. Condens. Matter 18, 2249–2259 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Richard, M.L., Feuchtwanger, J., Allen, S.M., et al.: Chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape-memory alloys studied with neutron diffraction. Philos. Mag. 87, 3437–3447 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Stager, C.V., Campbell, C.C.M.: Antiferromagnetic order in the Heusler alloy Ni2Mn(MnxSn1−x. Can. J. Phys. 56, 674–677 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    Dubenko, I., Khan, M., Pathak, A.K., et al.: Magnetocaloric effects in Ni-Mn-X based Heusler alloys with X=Ga, Sb, and In. J. Magn. Magn. Mater. 321, 754–757 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Dubenko, I., Samanta, T., Pathak, A.K., et al.: Magnetocaloric effect and multifunctional properties of Mn-Based Heusler alloys. J. Magn. Magn. Mater. 324, 3530–3534 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Quetz, A., Muchharla, B., Samanta, T., et al.: Phase diagram and magnetocaloric effects in Ni50Mn35(In1−xCrx)15 and (Mn1−xCrx)NiGe1.05 alloys. J. Appl. Phys. 115, 17A922–17A923 (2014)CrossRefGoogle Scholar
  10. 10.
    Pathak, A.K., Dubenko, I., Xiong, Y., et al.: Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15 Heusler alloys. J. Appl. Phys. 109, 07A916–07A913 (2011)Google Scholar
  11. 11.
    Pathak, A.K., Khan, M., Dubenko, I., et al.: Large magnetic entropy change in Ni50Mn50-xInx Heusler alloys. Appl. Phys. Lett. 90, 262504–262503 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Pathak, A.K., Dubenko, I., Xiong, Y., et al.: Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15 Heusler alloys. IEEE. Trans. Mag. 46, 1444–1446 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Pathak, A.K., Dubenko, I., Karaca, H.E., et al.: Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−xCoxMn32−yFeyGa18. Appl. Phys. Lett. 97, 062505–062503 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Pathak, A.K., Khan, M., Gautam, B.R., et al.: Exchange bias in bulk Ni–Mn–In-based Heusler alloys. J. Magn. Magn. Mater. 321, 963–965 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias in bulk Mn rich Ni–Mn–Sn Heusler alloys. J. Appl. Phys. 102, 113914–113913 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Prudnikov, V.N., Kazakov, A.P., Titov, I.S., et al.: Quasi- magnetism and exchange anisotropy in Ni-Mn-Co-In Heusler alloys. Phys. Solid State 53, 3490–3493 (2011)CrossRefGoogle Scholar
  17. 17.
    Pathak, A.K., Dubenko, I., Stadler, S., Ali, N.: Exchange bias in bulk Ni50Mn35In(15 –x)Six Heusler alloys. IEEE Trans. Magn. 45, 3855–3857 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Dubenko, I., Quetz, A., Pandey, S., et al.: Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J. Magn. Magn. Mater. 383, 183–189 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Priolkar, K.R., Lobo, D.N., Bhobe, P.A., et al.: Role of Ni-Mn hybridization in the magnetism of the martensitic state of Ni-Mn-In shape memory alloys. Eur. Phys. Lett. 94, 38006–p6 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Khan, M., Dubenko, I.S., Stadler, S., et al.: Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys. Appl. Phys. Lett. 102, 112402–112404 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Khan, M., Jung, J., Stoyko, S.S., et al.: The role of Ni-Mn hybridization on the martensitic phase transitions in Mn-rich Heusler alloys. Appl. Phys. Lett. 100, 172403–172404 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Dubenko, I., Samanta, T., Quetz, A., et al.: The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B. Appl. Phys. Lett. 100, 192402–192404 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Pathak, A.K., Dubenko, I., Pueblo, C., et al.: Magnetoresistance and magnetocaloric effect at a structural phase transition from a paramagnetic martensitic state to a paramagnetic austenitic state in Ni50Mn36.5In13.5 Heusler alloys. Appl. Phys. Lett. 96, 172503 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Stadler, S., Khan, M., Mitchell, J., et al.: Magnetocaloric properties of Ni2Mn1–xCuxGa. Appl. Phys. Lett. 88, 192511–192513 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Dubenko, I., Samanta, T., Quetz, A., et al.: The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni-Mn-In-B Heusler alloy. IEEE Trans. Magn. 48, 3738–3741 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Kainuma, R., Imano, Y., Ito, W., et al.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Zimm, C., Jastrab, A., Sternberg, A., et al.: Description and performance of a near-room temperature refrigerator. In: Kittel, P. (ed.) Adv Cryog Eng 43 (Parts A and B), pp. 1759–1766. Plenum, New York (1988)Google Scholar
  28. 28.
    Franco, V., Blásquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Liu, J., Gottschall, T., Skokov, K.P., et al.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Titov, I., Acet, M., Farle, M., et al.: Hysteresis effects in the inverse magnetocaloric effect in martensitic Ni-Mn-In and Ni-Mn-Sn. J. Appl. Phys. 112, 073914–073915 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Pecharsky, V.K., Gschneidner Jr., K.A., Pecharsky, A.O., Tishin, A.M.: Thermodynamics of the magnetocaloric effect. Phys. Rev. B 64, 144406–144413 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    Pathak, A.K., Dubenko, I., Pueblo, C., et al.: Magnetism and magnetocaloric effects in Ni50Mn35-xCoxIn15 Heusler alloys. J. Appl. Phys. 107, 09A907–09A903 (2010)CrossRefGoogle Scholar
  34. 34.
    Yucel, A., Lerman, Y., Aksoy, S.: Changes in the phase structure and magnetic characteristics of Gd5Si2Ge2 when alloyed with Mn. J. Alloys Compd. 420, 182–185 (2006)CrossRefGoogle Scholar
  35. 35.
    Shull, R.D., Provenzano, V., Shapiro, A.J., et al.: The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on themagnetocaloric properties of the Gd5Ge2Si2 alloy. J. Appl. Phys. 99, 08K908–08K9083 (2006)CrossRefGoogle Scholar
  36. 36.
    Phan, M.H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Kazakov, A.P., Prudnikov, V.N., Granovsky, A.B.: Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni-Mn-In based Heusler alloys. Appl. Phys. Lett. 98, 131911–131913 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Kazakov, A., Prudnikov, V., Granovsky, A., et al.: Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni–Mn–In–Z Heusler alloys. J. Nanosci. Nanotechnol. 12, 7426–7431 (2012)CrossRefGoogle Scholar
  39. 39.
    Sánchez, T., Turtelli, S., Grössinger, R., et al.: Exchange bias behavior in Ni50.0Mn35.5 In14.5 ribbons annealed at different temperatures. J. Magn. Magn. Mater. 324, 3535–3537 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Khovaylo, V.V., Kanomata, T., Tanaka, T., et al.: Magnetic properties of Ni50Mn34.8In15.2 probed by Mössbauer spectroscopy. Phys. Rev. B 80, 144409–144407 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Sharma, V.K., Chattopadhyay, M.K., Roy, S.B.: Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys Rev B 76, 140401–140404 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Imry, Y., Wortis, M.: Influence of quenched impurities on first-order phase transitions. Phys. Rev. B 19, 3580–3585 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    Perring, L., Kuntz, J.J., Bussy, F., Gachon, J.C.: Heat capacity on the equiatomic compounds in Ni-X (X = Al, In, Si, Ge and Bi) and M-Sb (with M = Ni, Co and Fe) systems. Intermetallics 7, 1235–1239 (1999)CrossRefGoogle Scholar
  44. 44.
    Shen, T.D., Schwarz, R.B., Coulter, J.Y., Thompson, J.D.: Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy. J. Appl. Phys. 91, 5240–5245 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Caballero-Flores, R., Sánchez, T., Rosa, W.O., et al.: On tuning the magnetocaloric effect in Ni-Mn-In Heusler alloy ribbons. J. Alloys Compd. 545, 216–221 (2012)CrossRefGoogle Scholar
  46. 46.
    Vazquez, M., Chiriac, H., Zhukov, A.: On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Phys. Status Solidi A 208(3), 493–501 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Antonov, A.S., Borisov, V.T., Borisov, O.V., et al.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D. Appl. Phys. 33, 1161–1168 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Chiriac, H., Ovari, T.A., Zhukov, A.: Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254–255, 469–471 (2003)CrossRefGoogle Scholar
  49. 49.
    Chiriac, H., Ovari, T.A., Pop, G.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105–10113 (1995)Google Scholar
  50. 50.
    Velázquez, J., Vazquez, M., Zhukov, A.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11(10), 2499–2505 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    Zhukov, A., Blanco, J.M., Ipatov, M., et al.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223–228 (2012). doi: 10.1186/1556-276X-7-223 ADSCrossRefGoogle Scholar
  52. 52.
    Zhukov, A.P., Vázquez, M., Velázquez, J., et al.: The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J. Magn. Magn. Mater. 151, 132–138 (1995)ADSCrossRefGoogle Scholar
  53. 53.
    Zhukov, A., Ipatov, M., Blanco, J.M., et al.: Fast magnetization switching in amorphous microwires. Acta Phys. Pol. A 126, 7–11 (2014)CrossRefGoogle Scholar
  54. 54.
    Garcia Prieto, M., Pina, E., Zhukov, A.P., et al.: Glass coated Co-rich amorphous microwires with improved permeability. Sensor. Actuat. A 81(1-3), 227–231 (2000)CrossRefGoogle Scholar
  55. 55.
    Zhukov, A., Gonzalez, J., Blanco, J.M., et al.: Induced magnetic anisotropy in Co-Mn-Si-B amorphous microwires. J. Appl. Phys. 87, 1402–1408 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    Dunand, D.C., Müllner, P.: Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 23, 216–232 (2011)CrossRefGoogle Scholar
  57. 57.
    Varga, R., Ryba, T., Vargova, Z., et al.: Magnetic and structural properties of Ni–Mn–Ga Heusler-type microwires. Scr. Mater. 65, 703–706 (2011)CrossRefGoogle Scholar
  58. 58.
    Garcıa, C., Prida, V.M., Vega, V., et al.: Magnetic characterization of Cu56Ga28Mn16 microwires. Phys. Status Solidi A 206(4), 644–647 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Craciunescu, C.M., Ercuta, A., Mitelea, I., et al.: Rapidly solidified ferromagnetic shape memory alloys. Eur. Phys. J. Spec. Top. 158, 161–165 (2008)CrossRefGoogle Scholar
  60. 60.
    Zhukova, V., Ipatov, M., Granovsky, A., Zhukov, A.: Magnetic properties of Ni-Mn-In-Co Heusler-type glass-coated microwires. J. Appl. Phys. 115, 17A939 (2014)CrossRefGoogle Scholar
  61. 61.
    Kuz’min, M.D.: Factors limiting the operation frequency of magnetic refrigerators. Appl. Phys. Lett. 90, 251916 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    Belov, K.P.: Magnetic Transitions. Consultants Bureau, New York (1959)Google Scholar
  63. 63.
    Nishihara, H., Furutani, Y., Wada, T., et al.: Magnetization process near the Curie temperature of a ferromagnetic Heusler alloy Co2VGa. J. Supercond. Nov. Magn. 24, 679–681 (2011)CrossRefGoogle Scholar
  64. 64.
    Aronin, A.S., Abrosimova, G.E., Kiselev, A.P., et al.: The effect of mechanical stress on Ni63.8Mn11.1Ga25.1 microwire crystalline structure and properties. Intermetallics 43, 60–64 (2013)CrossRefGoogle Scholar
  65. 65.
    Gunnarsson, O., Calandra, M., Han, E.: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1098 (2003)ADSCrossRefGoogle Scholar
  66. 66.
    Gantmakher, V.F.: Mooij rule and weak localization. JETP Lett. 94, 626–628 (2011)CrossRefGoogle Scholar
  67. 67.
    Vasiliev, A.N., Heczko, O., Volkova, O.S., et al.: On the electronic origin of the inverse magnetocaloric effect in Ni–Co–Mn–In Heusler alloys. J. Phys. D. Appl. Phys. 43, 055004–055011 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    Fuji, S., Ishida, S., Asano, S.: Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn. J. Phys. Soc. Japan 58, 3657–3665 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    Samanta, T., Saleheen, A.U., Lepkowski, D.L., et al.: Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys. Phys. Rev. B 90, 064412–064416 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    Sakamoto, N., Kyomen, T., Tsubouchi, S., Itoh, M.: Proportional relation between magnetoresistance and entropy suppression due to magnetic field in metallic ferromagnets. Phys. Rev. B 69, 092401–092404 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    Xiong, C.M., Sun, J.R., Chen, Y.F., et al.: Relation between magnetic entropy and resistivity in La0.67Ca0.33MnO3. IEEE Trans. Magn. 41, 122–125 (2005)ADSCrossRefGoogle Scholar
  72. 72.
    Rodionov, I.D., Mettus, D.E., Kazakov, A.P., et al.: Correlation between magnetoresistance and magnetic entropy at first-order and second-order phase transitions in Ni–Mn–In–Si Heusler alloys. Phys. Solid State 55, 1861–1865 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    Nagaosa, N., Sinova, J., Onoda, S., et al.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    Jungwirth, T., Sinova, J., Mašek, J., et al.: Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys. 78, 809–867 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    Sinova, J., Jungwirth, T., Cerne, J.: Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: a review. Int. J. Mod. Phys. B. 18, 1083–1118 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    Mikhailovsky, Y.O., Mettus, D.E., Kazakov, A.P., et al.: Anomalous Hall effect in (Co41Fe39B20) x (Al-O)100 − x nanocomposites. JETP Lett. 97, 473–477 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    Dubenko, I., Quetz, A., Pandey, S., et al.: Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J. Magn. Magn. Mater. 383, 183–189 (2015)Google Scholar
  78. 78.
    Prudnikov, V.N., Kazakov, A.P., Titov, I.S., et al.: Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Lett. 92(10), 666–670 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    Granovskii, A.B., Prudnikov, V.N., Kazakov, A.P., et al.: Determination of the normal and anomalous Hall effect coefficients in ferromagnetic Ni50Mn35In15 – xSix Heusler alloys at the martensitic transformation. J. Exp. Theor. Phys. 115, 805–814 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    Hirsch, J.C.E.: Overlooked contribution to the Hall effect in ferromagnetic metals. Phys. Rev. B 60, 14787–14792 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    Karplus, R., Lutinger, J.M.: Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954)ADSCrossRefzbMATHGoogle Scholar
  82. 82.
    Smit, J.: Theory of the Hall effect in ferromagnetic substances I. Physica (Amsterdam) 21, 877–887 (1955)ADSCrossRefGoogle Scholar
  83. 83.
    Vedyaev, A.V., Granovskii, A.B., Kotelnikova, O.A.: Transport Phenomena in Disordered Ferromagnetic Alloys, p. 158. Moscow State University, Moscow (1992). In RussianGoogle Scholar
  84. 84.
    Luttinger, J.M.: Theory of the Hall effect in ferromagnetic substances. Phys. Rev. 112, 739–751 (1958)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559–4566 (1970)ADSCrossRefGoogle Scholar
  86. 86.
    Zhu, S., Or, W., Wu, G.: Anomalous Hall effect in quarternary Heusler-type effect in Ni50Mn17Fe8Ga25 melt-sdpun ribbons. Appl. Phys. Lett. 95, 032503–032504 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    Antonov, V., Harmon, B., Yaresko, A.: Electronic Structure and Magneto-Optical Properties of Solids. Springer, New York (2004). 528 pagesGoogle Scholar
  88. 88.
    Gan’shina, E.A., Novikov, A.I., Zhykov, G.S., et al.: Magneto-optical spectroscopy of the martensitic transition in Fe48Mn24Ga28 Heusler alloys. Phys. Solid State 55, 1866–1870 (2013)ADSCrossRefGoogle Scholar
  89. 89.
    Novikov, A., Gan’shina, E., Granovsky, A., et al.: Magneto-optical spectroscopy of Heusler alloys: bulk samples, thin films and microwires. Solid State Phenom. 190, 335–338 (2012)CrossRefGoogle Scholar
  90. 90.
    Lee, S.J., Lee, Y.P., Hyun, Y.H., Kudryavtsev, Y.V.: Magnetic, magneto-optical, and transport properties of ferromagnetic shape-memory Ni2MnGa alloy. J. Appl. Phys. 93, 6975–6981 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    Novikov, A.I., Gan’shina, E.A., Gonzalez-Legarreta, L., et al.: Magnetic and magneto-optical research of Ni43.7Mn43.6In12.7 alloy ribbons. Solid State Phenom. 233–234, 200–203 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • I. Dubenko
    • 1
    Email author
  • N. Ali
    • 1
  • S. Stadler
    • 2
  • Arcady Zhukov
    • 4
  • Valentina Zhukova
    • 3
  • B. Hernando
    • 5
  • V. Prida
    • 5
  • V. Prudnikov
    • 6
  • E. Gan’shina
    • 6
  • A. Granovsky
    • 6
  1. 1.Department of PhysicsSouthern Illinois University CarbondaleCarbondaleUSA
  2. 2.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA
  3. 3.Faculty of ChemistryBasque Country UniversitySan SebastianSpain
  4. 4.UPV/EHU, Basque Country UniversitySan SebastianSpain
  5. 5.Department de FísicaUniversidad de OviedoOviedoSpain
  6. 6.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations