Skip to main content

Magnetic, Magnetocaloric, Magnetotransport, and Magneto-optical Properties of Ni–Mn–In-Based Heusler Alloys: Bulk, Ribbons, and Microwires

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 231))

Abstract

In this review, we will survey recent experimental results on magnetic, magnetocaloric, magnetotransport, and magneto-optical properties of Ni–Mn–In-based Heusler alloys in bulk polycrystalline samples, melt-spun ribbons, and glass-coated microwires. These ternary Ni–Mn–In and doped, quaternary alloys comprise a novel class of multifunctional magnetic materials with exceptional properties related to the magnetostructural martensitic transformation. We will focus on recent developments that have led to a better understanding of properties that are promising for applications, possible routes for improvements, and the identification of unsolved problems.

The original version of the book was revised because Arcady Zhukov’s name was misspelled. An erratum explaining this can be found at DOI 10.1007/978-3-319-26106-5_11

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MT:

Martensitic transition

MST:

Magnetostructural transition

FM:

Ferromagnetic

AFM:

Antiferromagnetic

AP:

Austenitic phase

MP:

Martensitic phase

AHE:

Anomalous Hall effect

MO:

Magneto-optical

MR:

Magnetoresistance

TKE:

Transverse Kerr effect

SOI:

Spin–orbit interaction

References

  1. Graf, T., Parkin, S., Felser, C.: Heusler compounds – a material class with exceptional properties. IEEE Trans. Magn. 47, 367–372 (2011)

    Article  Google Scholar 

  2. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., et al.: Ferromagnetism in the austenitic and martensitic states of Ni−Mn−In alloys. Phys. Rev. B 73, 174413–10 (2006)

    Article  ADS  Google Scholar 

  3. Kudryavtsev, Y.V., Lee, Y.P., Rhee, J.Y.: Dependence of the optical and magneto-optical properties and electronic structures on the atomic order in Ni2MnIn Heusler alloys. Phys. Rev. B 69, 195104–195109 (2004)

    Article  ADS  Google Scholar 

  4. Brown, P.J., Gandy, A.P., Ishida, K., et al.: The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J. Phys. Condens. Matter 18, 2249–2259 (2006)

    Article  ADS  Google Scholar 

  5. Richard, M.L., Feuchtwanger, J., Allen, S.M., et al.: Chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape-memory alloys studied with neutron diffraction. Philos. Mag. 87, 3437–3447 (2007)

    Article  ADS  Google Scholar 

  6. Stager, C.V., Campbell, C.C.M.: Antiferromagnetic order in the Heusler alloy Ni2Mn(MnxSn1−x. Can. J. Phys. 56, 674–677 (1978)

    Article  ADS  Google Scholar 

  7. Dubenko, I., Khan, M., Pathak, A.K., et al.: Magnetocaloric effects in Ni-Mn-X based Heusler alloys with X=Ga, Sb, and In. J. Magn. Magn. Mater. 321, 754–757 (2009)

    Article  ADS  Google Scholar 

  8. Dubenko, I., Samanta, T., Pathak, A.K., et al.: Magnetocaloric effect and multifunctional properties of Mn-Based Heusler alloys. J. Magn. Magn. Mater. 324, 3530–3534 (2012)

    Article  ADS  Google Scholar 

  9. Quetz, A., Muchharla, B., Samanta, T., et al.: Phase diagram and magnetocaloric effects in Ni50Mn35(In1−xCrx)15 and (Mn1−xCrx)NiGe1.05 alloys. J. Appl. Phys. 115, 17A922–17A923 (2014)

    Article  Google Scholar 

  10. Pathak, A.K., Dubenko, I., Xiong, Y., et al.: Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15 Heusler alloys. J. Appl. Phys. 109, 07A916–07A913 (2011)

    Google Scholar 

  11. Pathak, A.K., Khan, M., Dubenko, I., et al.: Large magnetic entropy change in Ni50Mn50-xInx Heusler alloys. Appl. Phys. Lett. 90, 262504–262503 (2007)

    Article  ADS  Google Scholar 

  12. Pathak, A.K., Dubenko, I., Xiong, Y., et al.: Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15 Heusler alloys. IEEE. Trans. Mag. 46, 1444–1446 (2010)

    Article  ADS  Google Scholar 

  13. Pathak, A.K., Dubenko, I., Karaca, H.E., et al.: Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−xCoxMn32−yFeyGa18. Appl. Phys. Lett. 97, 062505–062503 (2010)

    Article  ADS  Google Scholar 

  14. Pathak, A.K., Khan, M., Gautam, B.R., et al.: Exchange bias in bulk Ni–Mn–In-based Heusler alloys. J. Magn. Magn. Mater. 321, 963–965 (2009)

    Article  ADS  Google Scholar 

  15. Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias in bulk Mn rich Ni–Mn–Sn Heusler alloys. J. Appl. Phys. 102, 113914–113913 (2007)

    Article  ADS  Google Scholar 

  16. Prudnikov, V.N., Kazakov, A.P., Titov, I.S., et al.: Quasi- magnetism and exchange anisotropy in Ni-Mn-Co-In Heusler alloys. Phys. Solid State 53, 3490–3493 (2011)

    Article  Google Scholar 

  17. Pathak, A.K., Dubenko, I., Stadler, S., Ali, N.: Exchange bias in bulk Ni50Mn35In(15 –x)Six Heusler alloys. IEEE Trans. Magn. 45, 3855–3857 (2009)

    Article  ADS  Google Scholar 

  18. Dubenko, I., Quetz, A., Pandey, S., et al.: Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J. Magn. Magn. Mater. 383, 183–189 (2015)

    Article  ADS  Google Scholar 

  19. Priolkar, K.R., Lobo, D.N., Bhobe, P.A., et al.: Role of Ni-Mn hybridization in the magnetism of the martensitic state of Ni-Mn-In shape memory alloys. Eur. Phys. Lett. 94, 38006–p6 (2011)

    Article  ADS  Google Scholar 

  20. Khan, M., Dubenko, I.S., Stadler, S., et al.: Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys. Appl. Phys. Lett. 102, 112402–112404 (2013)

    Article  ADS  Google Scholar 

  21. Khan, M., Jung, J., Stoyko, S.S., et al.: The role of Ni-Mn hybridization on the martensitic phase transitions in Mn-rich Heusler alloys. Appl. Phys. Lett. 100, 172403–172404 (2012)

    Article  ADS  Google Scholar 

  22. Dubenko, I., Samanta, T., Quetz, A., et al.: The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B. Appl. Phys. Lett. 100, 192402–192404 (2012)

    Article  ADS  Google Scholar 

  23. Pathak, A.K., Dubenko, I., Pueblo, C., et al.: Magnetoresistance and magnetocaloric effect at a structural phase transition from a paramagnetic martensitic state to a paramagnetic austenitic state in Ni50Mn36.5In13.5 Heusler alloys. Appl. Phys. Lett. 96, 172503 (2010)

    Article  ADS  Google Scholar 

  24. Stadler, S., Khan, M., Mitchell, J., et al.: Magnetocaloric properties of Ni2Mn1–xCuxGa. Appl. Phys. Lett. 88, 192511–192513 (2006)

    Article  ADS  Google Scholar 

  25. Dubenko, I., Samanta, T., Quetz, A., et al.: The adiabatic temperature changes in the vicinity of the first-order paramagnetic-ferromagnetic transition in the Ni-Mn-In-B Heusler alloy. IEEE Trans. Magn. 48, 3738–3741 (2012)

    Article  ADS  Google Scholar 

  26. Kainuma, R., Imano, Y., Ito, W., et al.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)

    Article  ADS  Google Scholar 

  27. Zimm, C., Jastrab, A., Sternberg, A., et al.: Description and performance of a near-room temperature refrigerator. In: Kittel, P. (ed.) Adv Cryog Eng 43 (Parts A and B), pp. 1759–1766. Plenum, New York (1988)

    Google Scholar 

  28. Franco, V., Blásquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012)

    Article  ADS  Google Scholar 

  29. Liu, J., Gottschall, T., Skokov, K.P., et al.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012)

    Article  ADS  Google Scholar 

  30. Titov, I., Acet, M., Farle, M., et al.: Hysteresis effects in the inverse magnetocaloric effect in martensitic Ni-Mn-In and Ni-Mn-Sn. J. Appl. Phys. 112, 073914–073915 (2012)

    Article  ADS  Google Scholar 

  31. Pecharsky, V.K., Gschneidner Jr., K.A., Pecharsky, A.O., Tishin, A.M.: Thermodynamics of the magnetocaloric effect. Phys. Rev. B 64, 144406–144413 (2001)

    Article  ADS  Google Scholar 

  32. Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  ADS  Google Scholar 

  33. Pathak, A.K., Dubenko, I., Pueblo, C., et al.: Magnetism and magnetocaloric effects in Ni50Mn35-xCoxIn15 Heusler alloys. J. Appl. Phys. 107, 09A907–09A903 (2010)

    Article  Google Scholar 

  34. Yucel, A., Lerman, Y., Aksoy, S.: Changes in the phase structure and magnetic characteristics of Gd5Si2Ge2 when alloyed with Mn. J. Alloys Compd. 420, 182–185 (2006)

    Article  Google Scholar 

  35. Shull, R.D., Provenzano, V., Shapiro, A.J., et al.: The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on themagnetocaloric properties of the Gd5Ge2Si2 alloy. J. Appl. Phys. 99, 08K908–08K9083 (2006)

    Article  Google Scholar 

  36. Phan, M.H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    Article  ADS  Google Scholar 

  37. Kazakov, A.P., Prudnikov, V.N., Granovsky, A.B.: Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni-Mn-In based Heusler alloys. Appl. Phys. Lett. 98, 131911–131913 (2011)

    Article  ADS  Google Scholar 

  38. Kazakov, A., Prudnikov, V., Granovsky, A., et al.: Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni–Mn–In–Z Heusler alloys. J. Nanosci. Nanotechnol. 12, 7426–7431 (2012)

    Article  Google Scholar 

  39. Sánchez, T., Turtelli, S., Grössinger, R., et al.: Exchange bias behavior in Ni50.0Mn35.5 In14.5 ribbons annealed at different temperatures. J. Magn. Magn. Mater. 324, 3535–3537 (2012)

    Article  ADS  Google Scholar 

  40. Khovaylo, V.V., Kanomata, T., Tanaka, T., et al.: Magnetic properties of Ni50Mn34.8In15.2 probed by Mössbauer spectroscopy. Phys. Rev. B 80, 144409–144407 (2009)

    Article  ADS  Google Scholar 

  41. Sharma, V.K., Chattopadhyay, M.K., Roy, S.B.: Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys Rev B 76, 140401–140404 (2007)

    Article  ADS  Google Scholar 

  42. Imry, Y., Wortis, M.: Influence of quenched impurities on first-order phase transitions. Phys. Rev. B 19, 3580–3585 (1979)

    Article  ADS  Google Scholar 

  43. Perring, L., Kuntz, J.J., Bussy, F., Gachon, J.C.: Heat capacity on the equiatomic compounds in Ni-X (X = Al, In, Si, Ge and Bi) and M-Sb (with M = Ni, Co and Fe) systems. Intermetallics 7, 1235–1239 (1999)

    Article  Google Scholar 

  44. Shen, T.D., Schwarz, R.B., Coulter, J.Y., Thompson, J.D.: Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy. J. Appl. Phys. 91, 5240–5245 (2002)

    Article  ADS  Google Scholar 

  45. Caballero-Flores, R., Sánchez, T., Rosa, W.O., et al.: On tuning the magnetocaloric effect in Ni-Mn-In Heusler alloy ribbons. J. Alloys Compd. 545, 216–221 (2012)

    Article  Google Scholar 

  46. Vazquez, M., Chiriac, H., Zhukov, A.: On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Phys. Status Solidi A 208(3), 493–501 (2011)

    Article  ADS  Google Scholar 

  47. Antonov, A.S., Borisov, V.T., Borisov, O.V., et al.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D. Appl. Phys. 33, 1161–1168 (2000)

    Article  ADS  Google Scholar 

  48. Chiriac, H., Ovari, T.A., Zhukov, A.: Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254–255, 469–471 (2003)

    Article  Google Scholar 

  49. Chiriac, H., Ovari, T.A., Pop, G.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105–10113 (1995)

    Google Scholar 

  50. Velázquez, J., Vazquez, M., Zhukov, A.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11(10), 2499–2505 (1996)

    Article  ADS  Google Scholar 

  51. Zhukov, A., Blanco, J.M., Ipatov, M., et al.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223–228 (2012). doi:10.1186/1556-276X-7-223

    Article  ADS  Google Scholar 

  52. Zhukov, A.P., Vázquez, M., Velázquez, J., et al.: The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J. Magn. Magn. Mater. 151, 132–138 (1995)

    Article  ADS  Google Scholar 

  53. Zhukov, A., Ipatov, M., Blanco, J.M., et al.: Fast magnetization switching in amorphous microwires. Acta Phys. Pol. A 126, 7–11 (2014)

    Article  Google Scholar 

  54. Garcia Prieto, M., Pina, E., Zhukov, A.P., et al.: Glass coated Co-rich amorphous microwires with improved permeability. Sensor. Actuat. A 81(1-3), 227–231 (2000)

    Article  Google Scholar 

  55. Zhukov, A., Gonzalez, J., Blanco, J.M., et al.: Induced magnetic anisotropy in Co-Mn-Si-B amorphous microwires. J. Appl. Phys. 87, 1402–1408 (2000)

    Article  ADS  Google Scholar 

  56. Dunand, D.C., Müllner, P.: Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 23, 216–232 (2011)

    Article  Google Scholar 

  57. Varga, R., Ryba, T., Vargova, Z., et al.: Magnetic and structural properties of Ni–Mn–Ga Heusler-type microwires. Scr. Mater. 65, 703–706 (2011)

    Article  Google Scholar 

  58. Garcıa, C., Prida, V.M., Vega, V., et al.: Magnetic characterization of Cu56Ga28Mn16 microwires. Phys. Status Solidi A 206(4), 644–647 (2009)

    Article  ADS  Google Scholar 

  59. Craciunescu, C.M., Ercuta, A., Mitelea, I., et al.: Rapidly solidified ferromagnetic shape memory alloys. Eur. Phys. J. Spec. Top. 158, 161–165 (2008)

    Article  Google Scholar 

  60. Zhukova, V., Ipatov, M., Granovsky, A., Zhukov, A.: Magnetic properties of Ni-Mn-In-Co Heusler-type glass-coated microwires. J. Appl. Phys. 115, 17A939 (2014)

    Article  Google Scholar 

  61. Kuz’min, M.D.: Factors limiting the operation frequency of magnetic refrigerators. Appl. Phys. Lett. 90, 251916 (2007)

    Article  ADS  Google Scholar 

  62. Belov, K.P.: Magnetic Transitions. Consultants Bureau, New York (1959)

    Google Scholar 

  63. Nishihara, H., Furutani, Y., Wada, T., et al.: Magnetization process near the Curie temperature of a ferromagnetic Heusler alloy Co2VGa. J. Supercond. Nov. Magn. 24, 679–681 (2011)

    Article  Google Scholar 

  64. Aronin, A.S., Abrosimova, G.E., Kiselev, A.P., et al.: The effect of mechanical stress on Ni63.8Mn11.1Ga25.1 microwire crystalline structure and properties. Intermetallics 43, 60–64 (2013)

    Article  Google Scholar 

  65. Gunnarsson, O., Calandra, M., Han, E.: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1098 (2003)

    Article  ADS  Google Scholar 

  66. Gantmakher, V.F.: Mooij rule and weak localization. JETP Lett. 94, 626–628 (2011)

    Article  Google Scholar 

  67. Vasiliev, A.N., Heczko, O., Volkova, O.S., et al.: On the electronic origin of the inverse magnetocaloric effect in Ni–Co–Mn–In Heusler alloys. J. Phys. D. Appl. Phys. 43, 055004–055011 (2010)

    Article  ADS  Google Scholar 

  68. Fuji, S., Ishida, S., Asano, S.: Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn. J. Phys. Soc. Japan 58, 3657–3665 (1989)

    Article  ADS  Google Scholar 

  69. Samanta, T., Saleheen, A.U., Lepkowski, D.L., et al.: Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys. Phys. Rev. B 90, 064412–064416 (2014)

    Article  ADS  Google Scholar 

  70. Sakamoto, N., Kyomen, T., Tsubouchi, S., Itoh, M.: Proportional relation between magnetoresistance and entropy suppression due to magnetic field in metallic ferromagnets. Phys. Rev. B 69, 092401–092404 (2004)

    Article  ADS  Google Scholar 

  71. Xiong, C.M., Sun, J.R., Chen, Y.F., et al.: Relation between magnetic entropy and resistivity in La0.67Ca0.33MnO3. IEEE Trans. Magn. 41, 122–125 (2005)

    Article  ADS  Google Scholar 

  72. Rodionov, I.D., Mettus, D.E., Kazakov, A.P., et al.: Correlation between magnetoresistance and magnetic entropy at first-order and second-order phase transitions in Ni–Mn–In–Si Heusler alloys. Phys. Solid State 55, 1861–1865 (2013)

    Article  ADS  Google Scholar 

  73. Nagaosa, N., Sinova, J., Onoda, S., et al.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)

    Article  ADS  Google Scholar 

  74. Jungwirth, T., Sinova, J., Mašek, J., et al.: Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys. 78, 809–867 (2006)

    Article  ADS  Google Scholar 

  75. Sinova, J., Jungwirth, T., Cerne, J.: Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: a review. Int. J. Mod. Phys. B. 18, 1083–1118 (2004)

    Article  ADS  Google Scholar 

  76. Mikhailovsky, Y.O., Mettus, D.E., Kazakov, A.P., et al.: Anomalous Hall effect in (Co41Fe39B20) x (Al-O)100 − x nanocomposites. JETP Lett. 97, 473–477 (2013)

    Article  ADS  Google Scholar 

  77. Dubenko, I., Quetz, A., Pandey, S., et al.: Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J. Magn. Magn. Mater. 383, 183–189 (2015)

    Google Scholar 

  78. Prudnikov, V.N., Kazakov, A.P., Titov, I.S., et al.: Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Lett. 92(10), 666–670 (2010)

    Article  ADS  Google Scholar 

  79. Granovskii, A.B., Prudnikov, V.N., Kazakov, A.P., et al.: Determination of the normal and anomalous Hall effect coefficients in ferromagnetic Ni50Mn35In15 – x Si x Heusler alloys at the martensitic transformation. J. Exp. Theor. Phys. 115, 805–814 (2012)

    Article  ADS  Google Scholar 

  80. Hirsch, J.C.E.: Overlooked contribution to the Hall effect in ferromagnetic metals. Phys. Rev. B 60, 14787–14792 (1999)

    Article  ADS  Google Scholar 

  81. Karplus, R., Lutinger, J.M.: Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954)

    Article  ADS  MATH  Google Scholar 

  82. Smit, J.: Theory of the Hall effect in ferromagnetic substances I. Physica (Amsterdam) 21, 877–887 (1955)

    Article  ADS  Google Scholar 

  83. Vedyaev, A.V., Granovskii, A.B., Kotelnikova, O.A.: Transport Phenomena in Disordered Ferromagnetic Alloys, p. 158. Moscow State University, Moscow (1992). In Russian

    Google Scholar 

  84. Luttinger, J.M.: Theory of the Hall effect in ferromagnetic substances. Phys. Rev. 112, 739–751 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  85. Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559–4566 (1970)

    Article  ADS  Google Scholar 

  86. Zhu, S., Or, W., Wu, G.: Anomalous Hall effect in quarternary Heusler-type effect in Ni50Mn17Fe8Ga25 melt-sdpun ribbons. Appl. Phys. Lett. 95, 032503–032504 (2009)

    Article  ADS  Google Scholar 

  87. Antonov, V., Harmon, B., Yaresko, A.: Electronic Structure and Magneto-Optical Properties of Solids. Springer, New York (2004). 528 pages

    Google Scholar 

  88. Gan’shina, E.A., Novikov, A.I., Zhykov, G.S., et al.: Magneto-optical spectroscopy of the martensitic transition in Fe48Mn24Ga28 Heusler alloys. Phys. Solid State 55, 1866–1870 (2013)

    Article  ADS  Google Scholar 

  89. Novikov, A., Gan’shina, E., Granovsky, A., et al.: Magneto-optical spectroscopy of Heusler alloys: bulk samples, thin films and microwires. Solid State Phenom. 190, 335–338 (2012)

    Article  Google Scholar 

  90. Lee, S.J., Lee, Y.P., Hyun, Y.H., Kudryavtsev, Y.V.: Magnetic, magneto-optical, and transport properties of ferromagnetic shape-memory Ni2MnGa alloy. J. Appl. Phys. 93, 6975–6981 (2003)

    Article  ADS  Google Scholar 

  91. Novikov, A.I., Gan’shina, E.A., Gonzalez-Legarreta, L., et al.: Magnetic and magneto-optical research of Ni43.7Mn43.6In12.7 alloy ribbons. Solid State Phenom. 233–234, 200–203 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Office of Basic Energy Sciences, Material Science Division of the US Department of Energy (DOE, Grant No. DE-FG02-06ER46291 (SIU) and DE-FG02-13ER46946 (LSU)), by the Russian Foundation for Basic Research (MSU), by the Spanish MINECO, and by the projects MAT2013-48054-C2-2-R and MAT2013-4731-C2-1-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dubenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubenko, I. et al. (2016). Magnetic, Magnetocaloric, Magnetotransport, and Magneto-optical Properties of Ni–Mn–In-Based Heusler Alloys: Bulk, Ribbons, and Microwires. In: Zhukov, A. (eds) Novel Functional Magnetic Materials. Springer Series in Materials Science, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-26106-5_2

Download citation

Publish with us

Policies and ethics