Skip to main content

Carbon Materials for Supercapacitors

  • Chapter
  • First Online:
Nanomaterials in Advanced Batteries and Supercapacitors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Supercapacitors have attracted intense attention due to their great potential to meet the demand of both high energy density and power density in many advanced technologies. Various carbon materials, including porous carbon, graphene, carbon fiber, carbon nanotube, and carbon network, are currently pursued as supercapacitor electrodes because of their high specific surface area, high electronic conductivity, high chemical stability, and low cost. In additions, the flexible solid-state supercapacitors based on carbon materials with long cycle life, high power density, environmental friendliness, and safety afford a promising option for energy storage applications. Then, we review the relevant results about carbon-based capacitive materials and view the ongoing trends in advanced supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kierzek K, Frackowiak E, Lota G et al (2004) Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim Acta 49:515–523

    Article  Google Scholar 

  2. Xia K, Gao Q, Jiang J et al (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46:1718–1726

    Article  Google Scholar 

  3. Fang B, Wei YZ, Maruyama K et al (2005) High capacity supercapacitors based on modified activated carbon aerogel. J Appl Electrochem 35:229–233

    Article  Google Scholar 

  4. Zhu Y, Hu H, Li W-C et al (2006) Cresol–formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J Power Sources 162:738–742

    Article  Google Scholar 

  5. Kumagai S, Sato M, Tashima D (2013) Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochim Acta 114:617–626

    Article  Google Scholar 

  6. Molina-Sabio M, Rodrıguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf A Physicochem Eng Asp 241:15–25

    Article  Google Scholar 

  7. Xu J, Chen L, Qu H et al (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680

    Article  Google Scholar 

  8. Ding L, Zou B, Li Y et al (2013) The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials. Colloids Surf A Physicochem Eng Asp 423:104–111

    Article  Google Scholar 

  9. Wang C, Sun L, Zhou Y et al (2013) P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors. Carbon 59:537–546

    Article  Google Scholar 

  10. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  Google Scholar 

  11. Zhang LL, Zhao X, Stoller MD et al (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12:1806–1812

    Article  Google Scholar 

  12. Zhai D, Li B, Du H et al (2011) The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors. J Solid State Electrochem 15:787–794

    Article  Google Scholar 

  13. Raymundo-Piñero E, Kierzek K, Machnikowski J et al (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507

    Article  Google Scholar 

  14. Zhang C, Long D, Xing B et al (2008) The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal. Electrochem Commun 10:1809–1811

    Article  Google Scholar 

  15. Ruiz V, Blanco C, Granda M et al (2008) Enhanced life-cycle supercapacitors by thermal treatment of mesophase-derived activated carbons. Electrochim Acta 54:305–310

    Article  Google Scholar 

  16. Zhou M, Pu F, Wang Z et al (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    Article  Google Scholar 

  17. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  18. Huang X, Qian K, Yang J et al (2012) Functional nanoporous graphene foams with controlled pore sizes. Adv Mater 24:4419–4423

    Article  Google Scholar 

  19. Ning G, Fan Z, Wang G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun 47:5976–5978

    Article  Google Scholar 

  20. Chen Z, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    Article  Google Scholar 

  21. Shan C, Tang H, Wong T et al (2012) Facile synthesis of a large quantity of graphene by chemical vapor deposition: an advanced catalyst carrier. Adv Mater 24:2491–2495

    Article  Google Scholar 

  22. Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184

    Article  Google Scholar 

  23. Lee J, Yoon S, Hyeon T et al (1999) Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun 21:2177–2178

    Article  Google Scholar 

  24. Lei Z, Christov N, Zhang LL et al (2011) Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J Mater Chem 21:2274–2281

    Article  Google Scholar 

  25. Xiao Y, Dong H, Lei B et al (2015) Ordered mesoporous carbons with fiber- and rod-like morphologies for supercapacitor electrode materials. Mater Lett 138:37–40

    Article  Google Scholar 

  26. Lee SH, Kim HW, Hwang JO et al (2010) Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed 49:10084–10088

    Article  Google Scholar 

  27. Fan Z, Liu Y, Yan J et al (2012) Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Adv Energy Mater 2:419–424

    Article  Google Scholar 

  28. Fuertes AB, Centeno TA (2005) Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J Mater Chem 15:1079–1083

    Article  Google Scholar 

  29. Zhai Y, Dou Y, Zhao D et al (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  Google Scholar 

  30. Feng G, Cummings PT (2011) Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J Phys Chem Lett 2:2859–2864

    Article  Google Scholar 

  31. Sun G, Wang J, Liu X et al (2010) Ion transport behavior in triblock copolymer-templated ordered mesoporous carbons with different pore symmetries. J Phys Chem C 114:18745–18751

    Article  Google Scholar 

  32. Liang Y, Wu D, Fu R (2009) Preparation and electrochemical performance of novel ordered mesoporous carbon with an interconnected channel structure. Langmuir 25:7783–7785

    Article  Google Scholar 

  33. Chen L-F, Huang Z-H, Liang H-W et al (2013) Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ Sci 6:3331–3338

    Article  Google Scholar 

  34. Liang C, Hong K, Guiochon GA et al (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed 43:5785–5789

    Article  Google Scholar 

  35. Liu H-J, Wang X-M, Cui W-J et al (2010) Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 20:4223–4230

    Article  Google Scholar 

  36. Liu Y, Deng R, Wang Z et al (2012) Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material. J Mater Chem 22:13619–13624

    Article  Google Scholar 

  37. Fang B, Kim M, Kim JH et al (2008) Controllable synthesis of hierarchical nanostructured hollow core/mesopore shell carbon for electrochemical hydrogen storage. Langmuir 24:12068–12072

    Article  Google Scholar 

  38. Fang B, Kim JH, Lee C et al (2007) Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J Phys Chem C 112:639–645

    Article  Google Scholar 

  39. Kim JH, Fang B, Song MY et al (2012) Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chem Mater 24:2256–2264

    Article  Google Scholar 

  40. Chai GS, Shin IS, Yu JS (2004) Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Adv Mater 16:2057–2061

    Article  Google Scholar 

  41. Manthiram A, Vadivel Murugan A, Sarkar A et al (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638

    Article  Google Scholar 

  42. Fang B, Kim M, Yu J-S (2008) Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell. Appl Catal Environ 84:100–105

    Article  Google Scholar 

  43. Kim JH, Fang B, Yoon SB et al (2009) Hollow core/mesoporous shell carbon capsule as an unique cathode catalyst support in direct methanol fuel cell. Appl Catal Environ 88:368–375

    Article  Google Scholar 

  44. Kim JH, Yu J-S (2010) Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells. Phys Chem Chem Phys 12:15301–15308

    Article  Google Scholar 

  45. Fu J, Xu Q, Chen J et al (2010) Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem Commun 46:6563–6565

    Article  Google Scholar 

  46. Chen K, Chen L, Chen Y et al (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968–20976

    Article  Google Scholar 

  47. Choi BG, Yang M, Hong WH et al (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020–4028

    Article  Google Scholar 

  48. Wang Z-L, Xu D, Wang H-G et al (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7:2422–2430

    Article  Google Scholar 

  49. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  50. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  51. Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  Google Scholar 

  52. Tung VC, Allen MJ, Yang Y et al (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  Google Scholar 

  53. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33

    Article  Google Scholar 

  54. Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207

    Article  Google Scholar 

  55. Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411

    Article  Google Scholar 

  56. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  57. Yang X, Dou X, Rouhanipour A et al (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217

    Article  Google Scholar 

  58. Taghioskoui M (2009) Trends in graphene research. Mater Today 12:34–37

    Article  Google Scholar 

  59. Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22:19625–19628

    Article  Google Scholar 

  60. Li D, Muller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  61. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  62. Shen J, Hu Y, Shi M et al (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520

    Article  Google Scholar 

  63. Lei Z, Lu L, Zhao XS (2012) The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 5:6391–6399

    Article  Google Scholar 

  64. Huang H-C, Huang C-W, Hsieh C-T et al (2011) Photocatalytically reduced graphite oxide electrode for electrochemical capacitors. J Phys Chem C 115:20689–20695

    Article  Google Scholar 

  65. El-Kady MF, Strong V, Dubin S et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  Google Scholar 

  66. Li ZJ, Yang BC, Zhang SR et al (2012) Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Appl Surf Sci 258:3726–3731

    Article  Google Scholar 

  67. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639

    Article  Google Scholar 

  68. Sun L, Tian C, Li M et al (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6470

    Article  Google Scholar 

  69. Biswal M, Banerjee A, Deo M et al (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259

    Article  Google Scholar 

  70. Long C, Qi D, Wei T et al (2014) Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv Funct Mater 24:3953–3961

    Article  Google Scholar 

  71. Chen Z, Wen J, Yan C et al (2011) High-performance supercapacitors based on hierarchically porous graphite particles. Adv Energy Mater 1:551–556

    Article  Google Scholar 

  72. Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons – from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833

    Article  Google Scholar 

  73. Lukatskaya MR, Halim J, Dyatkin B et al (2014) Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew Chem Int Ed 53:4877–4880

    Article  Google Scholar 

  74. Zhang L, Qin X, Shao G et al (2014) A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater Lett 122:78–81

    Article  Google Scholar 

  75. Dimovski S, Nikitin A, Ye H et al (2004) Synthesis of graphite by chlorination of iron carbide at moderate temperatures. J Mater Chem 14:238–243

    Article  Google Scholar 

  76. Dash R, Chmiola J, Yushin G et al (2006) Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44:2489–2497

    Article  Google Scholar 

  77. Zheng J, Ekstrom TC, Gordeev SK et al (2000) Carbon with an onion-like structure obtained by chlorinating titanium carbide. J Mater Chem 10:1039–1041

    Article  Google Scholar 

  78. Cambaz ZG, Yushin GN, Gogotsi Y et al (2006) Formation of carbide-derived carbon on β-silicon carbide whiskers. J Am Ceram Soc 89:509–514

    Article  Google Scholar 

  79. Welz S, Gogotsi Y, McNallan MJ (2003) Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J Appl Phys 93:4207–4214

    Article  Google Scholar 

  80. Gao P C, Tsai W Y, Daffos B et al (2015) Graphene-like carbide derived carbon for high-power supercapacitors. Nano Energy 12:197–206

    Google Scholar 

  81. Gogotsi Y, Nikitin A, Ye H et al (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594

    Article  Google Scholar 

  82. Lätt M, Käärik M, Permann L et al (2010) A structural influence on the electrical double-layer characteristics of Al4C3-derived carbon. J Solid State Electrochem 14:543–548

    Article  Google Scholar 

  83. Chmiola J, Largeot C, Taberna P-L et al (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480–483

    Article  Google Scholar 

  84. Portet C, Yushin G, Gogotsi Y (2008) Effect of carbon particle size on electrochemical performance of EDLC. J Electrochem Soc 155:A531–A536

    Article  Google Scholar 

  85. Thomberg T, Jänes A, Lust E (2009) Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J Electroanal Chem 630:55–62

    Article  Google Scholar 

  86. Thomberg T, Jänes A, Lust E (2010) Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon. Electrochim Acta 55:3138–3143

    Article  Google Scholar 

  87. Yeon S-H, Reddington P, Gogotsi Y et al (2010) Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon 48:201–210

    Article  Google Scholar 

  88. Tallo I, Thomberg T, Kurig H et al (2014) Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide. Carbon 67:607–616

    Article  Google Scholar 

  89. Presser V, Zhang L, Niu JJ et al (2011) Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv Energy Mater 1:423–430

    Article  Google Scholar 

  90. Arulepp M, Leis J, Lätt M et al (2006) The advanced carbide-derived carbon based supercapacitor. J Power Sources 162:1460–1466

    Article  Google Scholar 

  91. Portet C, Lillo-Rodenas MA, Linares-Solano A et al (2009) Capacitance of KOH activated carbide-derived carbons. Phys Chem Chem Phys 11:4943–4945

    Article  Google Scholar 

  92. Korenblit Y, Rose M, Kockrick E et al (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4:1337–1344

    Article  Google Scholar 

  93. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855

    Article  Google Scholar 

  94. Wood KN, O’Hayre R, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7:1212–1249

    Article  Google Scholar 

  95. Wu D, Li Z, Zhong M et al (2014) Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP. Angew Chem 126:4038–4041

    Article  Google Scholar 

  96. Zhao Y, Hu C, Hu Y et al (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375

    Article  Google Scholar 

  97. Wen Z, Wang X, Mao S et al (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616

    Article  Google Scholar 

  98. Zhao L, Fan L-Z, Zhou M-Q et al (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    Article  Google Scholar 

  99. Qian W, Sun F, Xu Y et al (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  Google Scholar 

  100. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  Google Scholar 

  101. Zhang LL, Zhao X, Ji H et al (2012) Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ Sci 5:9618–9625

    Article  Google Scholar 

  102. Deng D, Yu L, Chen X et al (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 52:371–375

    Article  Google Scholar 

  103. Chen L-F, Zhang X-D, Liang H-W et al (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102

    Article  MathSciNet  Google Scholar 

  104. Guo H, Gao Q (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186:551–556

    Article  Google Scholar 

  105. Han J, Zhang LL, Lee S et al (2012) Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 7:19–26

    Article  Google Scholar 

  106. Wu Z-S, Winter A, Chen L et al (2012) Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24:5130–5135

    Article  Google Scholar 

  107. Gu W, Sevilla M, Magasinski A et al (2013) Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ Sci 6:2465–2476

    Article  Google Scholar 

  108. Hasegawa G, Aoki M, Kanamori K et al (2011) Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area. J Mater Chem 21:2060–2063

    Article  Google Scholar 

  109. Xu Y, Sheng K, Li C et al (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    Article  Google Scholar 

  110. Chen P, Yang J-J, Li S-S et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256

    Article  Google Scholar 

  111. You B, Wang L, Yao L et al (2013) Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun 49:5016–5018

    Article  Google Scholar 

  112. Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497

    Article  Google Scholar 

  113. Worsley MA, Olson TY, Lee JRI et al (2011) High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett 2:921–925

    Article  Google Scholar 

  114. Luan VH, Tien HN, Hoa LT et al (2013) Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J Mater Chem A 1:208–211

    Article  Google Scholar 

  115. Cao X, Shi Y, Shi W et al (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168

    Article  Google Scholar 

  116. Yavari F, Chen Z, Thomas AV et al (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166

    Google Scholar 

  117. Masahiro M, Mikio N, Golap K et al (2012) Formation of graphene-containing porous carbon film for electric double-layer capacitor by pulsed plasma chemical vapor deposition. Jpn J Appl Phys 51:045103

    Article  Google Scholar 

  118. Yong Y-C, Dong X-C, Chan-Park MB et al (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6:2394–2400

    Article  Google Scholar 

  119. Jiang S, Shi T, Zhan X et al (2014) High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J Power Sources 272:16–23

    Article  Google Scholar 

  120. Jin HY, Peng ZH, Tang WM et al (2014) Controllable functionalized carbon fabric for high-performance all-carbon-based supercapacitors. RSC Adv 4:33022–33028

    Article  Google Scholar 

  121. Wang G, Wang H, Lu X et al (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26:2676–2682

    Article  Google Scholar 

  122. Qian H, Kucernak AR, Greenhalgh ES et al (2013) Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl Mater Interfaces 5:6113–6122

    Article  Google Scholar 

  123. Hsu Y-K, Chen Y-C, Lin Y-G et al (2012) High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. J Mater Chem 22:3383–3387

    Article  Google Scholar 

  124. Wang S, Pei B, Zhao X et al (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2:530–536

    Article  Google Scholar 

  125. Xu Y, Lin Z, Huang X et al (2013) Functionalized graphene hydrogel-based high-performance supercapacitors. Adv Mater 25:5779–5784

    Article  Google Scholar 

  126. Kaempgen M, Chan CK, Ma J et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    Article  Google Scholar 

  127. Niu Z, Dong H, Zhu B et al (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25:1058–1064

    Article  Google Scholar 

  128. Niu Z, Zhou W, Chen J et al (2013) A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors. Small 9:518–524

    Article  Google Scholar 

  129. Yu Jin K, Haegeun C, Chi-Hwan H et al (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:065401

    Article  Google Scholar 

  130. Zheng C, Qian W, Cui C et al (2012) Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon 50:5167–5175

    Article  Google Scholar 

  131. Xu G, Zheng C, Zhang Q et al (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881

    Article  Google Scholar 

  132. Choi BG, Hong J, Hong WH et al (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213

    Article  Google Scholar 

  133. Maiti UN, Lim J, Lee KE et al (2014) Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater 26:615–619

    Article  Google Scholar 

  134. Niu Z, Chen J, Hng HH et al (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144–4150

    Article  Google Scholar 

  135. Xu Y, Lin Z, Huang X et al (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049

    Article  Google Scholar 

  136. Huang H, Tang Y, Xu L et al (2014) Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors. ACS Appl Mater Interfaces 6:10248–10257

    Article  Google Scholar 

  137. Yang X, Zhu J, Qiu L et al (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23:2833–2838

    Article  Google Scholar 

  138. Chen C-M, Zhang Q, Huang C-H et al (2012) Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chem Commun 48:7149–7151

    Article  Google Scholar 

  139. Wang G, Sun X, Lu F et al (2012) Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8:452–459

    Article  Google Scholar 

  140. Seo DH, Yick S, Han ZJ et al (2014) Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes. ChemSusChem 7:2317–2324

    Article  Google Scholar 

  141. Fan Z, Yan J, Zhi L et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728

    Article  Google Scholar 

  142. Wang W, Guo S, Penchev M et al (2013) Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2:294–303

    Article  Google Scholar 

  143. Gao K, Shao Z, Li J et al (2013) Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J Mater Chem A 1:63–67

    Article  Google Scholar 

  144. Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  Google Scholar 

  145. Kang YJ, Chun S-J, Lee S-S et al (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6:6400–6406

    Article  Google Scholar 

  146. Weng Z, Su Y, Wang D-W et al (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    Article  Google Scholar 

  147. Jost K, Perez CR, McDonough JK et al (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067

    Article  Google Scholar 

  148. Zhou W, Zhou K, Liu X et al (2014) Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers. J Mater Chem A 2:7250–7255

    Article  Google Scholar 

  149. Fu Y, Cai X, Wu H et al (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24:5713–5718

    Article  Google Scholar 

  150. Dai S, Guo H, Wang M et al (2014) A flexible micro-supercapacitor based on a pen ink-carbon fiber thread. J Mater Chem A 2:19665–19669

    Article  Google Scholar 

  151. Le VT, Kim H, Ghosh A et al (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  Google Scholar 

  152. Cao Y, Zhu M, Li P et al (2013) Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives. Phys Chem Chem Phys 15:19550–19556

    Article  Google Scholar 

  153. Dalton AB, Collins S, Munoz E et al (2003) Super-tough carbon-nanotube fibres. Nature 423:703–703

    Article  Google Scholar 

  154. Zhang Y, Bai W, Cheng X et al (2014) Flexible and stretchable lithium-Ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed 53:14564–14568

    Article  Google Scholar 

  155. Yang Z, Deng J, Chen X et al (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52:13453–13457

    Article  Google Scholar 

  156. Xu P, Gu T, Cao Z et al (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4:n/a–n/a

    Google Scholar 

  157. Ren J, Bai W, Guan G et al (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970

    Article  Google Scholar 

  158. Meng Q, Wu H, Meng Y et al (2014) High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv Mater 26:4100–4106

    Article  Google Scholar 

  159. Meng Y, Zhao Y, Hu C et al (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331

    Article  Google Scholar 

  160. Lee JA, Shin MK, Kim SH et al (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970

    Google Scholar 

  161. Aboutalebi SH, Jalili R, Esrafilzadeh D et al (2014) High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8:2456–2466

    Article  Google Scholar 

  162. Sun H, You X, Deng J et al (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater 26:2868–2873

    Article  Google Scholar 

  163. Yu D, Goh K, Wang H et al (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nano 9:555–562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, W., Liu, X., Zhou, K., Jia, J. (2016). Carbon Materials for Supercapacitors. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics