Skip to main content

Nanostructured Oxides as Cathode Materials for Supercapacitors

  • Chapter
  • First Online:
Nanomaterials in Advanced Batteries and Supercapacitors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter presents a review of the research progress on the metal oxide and its composites for cathode of supercapacitor. Typical and mostly used methods for various metal oxides with different nanostructures are summarized. More specifically, these approaches include physical routes, such as sonication and microwaves, and chemical routes such as hydrothermal, sol–gel, and template. Our main focus is on the most recent work on nanostructure oxides including transition metal oxides such as RuO2, MnO2, MoO3, Co3O4, VO2, V2O5, ZnO, NiO, PbO2, and SnO2; intercalation compounds such as LiCoO2, LiMn2O4, Li[Ni1/3Co1/3Mn1/3]O2, NaxMnO2 and KxMnO2; and conversion compounds such as NiCo2O4, ZnCo2O4, CoMoO4, Zn2SnO4, NiMoO4 and MnMoO4. Some new trends in nanomaterials for supercapacitors are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  2. Liu C, Li F, Ma LP et al (2010) Advanced materials for energy storage. Adv Mater 22:E28–62

    Article  Google Scholar 

  3. Chen S, Xing W, Duan J et al (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954

    Article  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nature Mater 7:845–854

    Article  Google Scholar 

  5. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  6. Kötz R, Mu ¨ller S, Ba¨rtschi M et al (2001) Super capacitors for peak-power demand in fuel-cell-driven cars. Electrochem Soc Proc 21:564–575

    Google Scholar 

  7. Naoi K, Naoi W, Aoyagi S et al (2013) New generation “nanohybrid supercapacitor”. Accounts Chem Res 46:1075–1083

    Article  Google Scholar 

  8. Zhang QF, Uchaker E, Candelaria SL et al (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  Google Scholar 

  9. Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91–109

    Article  Google Scholar 

  10. Cheng C, Fan HJ (2012) Branched nanowires: synthesis and energy applications. Nano Today 7:327–343

    Article  Google Scholar 

  11. Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404

    Article  Google Scholar 

  12. Chandra A, Roberts AJ, Lam How Yee E et al (2009) Nanostructured oxides for energy storage applications in batteries and supercapacitors. Pure Appl Chem 81:1489–1498

    Article  Google Scholar 

  13. Jiang J, Li YY, Liu JP et al (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  Google Scholar 

  14. Deng W, Ji X, Chen Q et al (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1:1171–1178

    Article  Google Scholar 

  15. Wang FX, Xiao SY, Hou YY et al (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3:13059–13084

    Article  Google Scholar 

  16. Lang XY, Hirata A, Fujita T et al (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  Google Scholar 

  17. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  18. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  19. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    Article  Google Scholar 

  20. Andrieu X (2000) New trends electrochemical technology. In: Osaka T, Datta M (eds) Energy storage systems for electronics, vol 1. Gordon and Breach, London, p 521

    Google Scholar 

  21. Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24:4197–4202

    Article  Google Scholar 

  22. Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  Google Scholar 

  23. Hall PJ, Mirzaeian M, Fletcher SI et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  Google Scholar 

  24. Ghosh S, Inganas O (1999) Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv Mater 11:1214–1218

    Article  Google Scholar 

  25. Cottineau T, Toupin M, Delahaye T et al (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Article  Google Scholar 

  26. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301

    Article  Google Scholar 

  27. Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498

    Article  Google Scholar 

  28. Haas O, Cairns EJ (1999) Electrochemical energy storage. Annu Rep Sect C 95:163–198

    Article  Google Scholar 

  29. Balducci A, Dugas R, Taberna PL et al (2007) High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  Google Scholar 

  30. Hu Y, Wang J, Jiang X et al (2013) Facile chemical synthesis of nanoporous layered δ−MnO2 thin film for high-performance flexible electrochemical capacitors. Appl Surf Sci 271:193–201

    Article  Google Scholar 

  31. Tang W, Liu LL, Tian S et al (2011) LiMn2O4.. nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:1159–1162

    Article  Google Scholar 

  32. Rui X, Sim D, Xu C et al (2012) One-pot synthesis of carbon-coated VO2(B) nanobelts for high-rate lithium storage. RSC Adv 2:1174–1180

    Article  Google Scholar 

  33. Tang W, Gao XW, Zhu YS et al (2012) A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. J Mater Chem 22:20143–20145

    Article  Google Scholar 

  34. Tang W, Hou YY, Wang FX et al (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett 13:2036–2040

    Article  Google Scholar 

  35. Tang W, Liu LL, Tian S et al (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060

    Article  Google Scholar 

  36. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55

    Article  Google Scholar 

  37. Perkas N, Zhong Z, Grinblat J et al (2008) Deposition of gold particles on mesoporous catalyst supports by sonochemical method, and their catalytic performance for CO oxidation. Catal Lett 120:19–24

    Article  Google Scholar 

  38. Wang H, Zhu JJ, Zhu JM et al (2002) Sonochemical method for the preparation of bismuth sulfide nanorods. J Phys Chem B 106:3848–3854

    Article  Google Scholar 

  39. Li B, Xie Y, Liu Y et al (2001) Sonochemical synthesis of nanocrystalline silver tellurides Ag2Te and Ag7Te4. J Solid State Chem 158:260–263

    Article  Google Scholar 

  40. Li B, Xie Y, Huang J et al (2000) Sonochemical synthesis of nanocrystalline copper tellurides Cu7Te4 and Cu4Te3 at room temperature. Chem Mater 12:2614–2616

    Article  Google Scholar 

  41. Salinas EP, Sánchez EM (2010) Preparation of Sb2S3 Nanostructures by the ionic liquid-assisted sonochemical method. Cryst Growth Des 10:3917–3924

    Article  Google Scholar 

  42. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Article  Google Scholar 

  43. Gao MR, Xu YF, Jiang J et al (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017

    Article  Google Scholar 

  44. Zhuang Z, Peng Q, Li Y (2011) Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 40:5492–5513

    Article  Google Scholar 

  45. Gao MR, Jiang J, Yu SH (2012) Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small 8:13–27

    Article  Google Scholar 

  46. Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M=Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297

    Article  Google Scholar 

  47. Sue K, Kimura K, Arai K (2004) Rapid hydrothermal synthesis of ZnO nanorods without organics. Mater Lett 58:3229–3231

    Article  Google Scholar 

  48. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  49. Lam UT, Mammucari R, Suzuki K et al (2008) Processing of iron oxide nanoparticles by supercritical fluids. Ind Eng Chem Res 47:599–614

    Article  Google Scholar 

  50. Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61:151–170

    Article  Google Scholar 

  51. Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  Google Scholar 

  52. Liang HW, Liu S, Yu SH (2010) Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv Mater 22:3925–3937

    Article  Google Scholar 

  53. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  Google Scholar 

  54. Zhao YS, Fu H, Peng A et al (2008) Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater 20:2859–2876

    Article  Google Scholar 

  55. Fan H, Zhang YG, Zhang MF et al (2008) Glucose-assisted synthesis of CoTe nanotubes in situ templated by Te nanorods. Cryst Growth Des 8:2838–2841

    Article  Google Scholar 

  56. Possin GE (1970) A method for forming very small diameter wires. Rev Sci Instrum 41:772–774

    Article  Google Scholar 

  57. Martin CR (1994) Nanomaterials-A membrane-based synthetic approach. Science 266:1961–1966

    Article  Google Scholar 

  58. Murakami H, Kobayashi M, Takeuchi H et al (1999) Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 187:143–152

    Article  Google Scholar 

  59. Kim TW, Park I, Ryoo R (2003) A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. Angew Chem Int Ed 115:4511–4515

    Article  Google Scholar 

  60. Berry AD, Tonucci RJ, Fatemi M (1996) Fabrication of GaAs and InAs wires in nanochannel glass. Appl Phys Lett 69:2846–2848

    Article  Google Scholar 

  61. Chakarvarti SK, Vetter J (1998) Template synthesis-a membrane based technology for generation of nano-/micro materials: a review. Radiat Meas 29:149–159

    Article  Google Scholar 

  62. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  63. She GW, Zhang XH, Shi WS et al (2008) Template-free electrochemical synthesis of single-crystal CuTe nanoribbons. Cryst Growth Des 8:1789–1791

    Article  Google Scholar 

  64. Pinisetty D, Davis D, Podlaha-Murphy EJ et al (2011) Characterization of electrodeposited bismuth–tellurium nanowires and nanotubes. Acta Mater 59:2455–2461

    Article  Google Scholar 

  65. Barau A, Budarin V, Caragheorgheopol A et al (2008) A simple and efficient route to active and dispersed silica supported palladium nanoparticles. Catal Lett 124:204–214

    Article  Google Scholar 

  66. White RJ, Luque R, Budarin VL et al (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38:481–494

    Article  Google Scholar 

  67. Donega´ CM, Liljeroth P, Vanmaekelbergh D (2005) Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1:1152–1162

    Article  Google Scholar 

  68. Martínez A, Prieto G (2007) The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles. Catal Commun 8:1479–1486

    Article  Google Scholar 

  69. Serp P, Kalck P, Feurer R (2002) Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem Rev 102:3085–3128

    Article  Google Scholar 

  70. Lee H, Cho MS, Kim IH et al (2010) RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth Met 160:1055–1059

    Article  Google Scholar 

  71. Choi D, Kumta PN (2006) Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J Electrochem Soc 153:A2298–2303

    Article  Google Scholar 

  72. Zhao DD, Bao SJ, Zhou WJ et al (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874

    Article  Google Scholar 

  73. Hu CC, Chang KH, Lin MC et al (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695

    Article  Google Scholar 

  74. Gao B, Hao L, Fu Q et al (2010) Hydrothermal synthesis and electrochemical capacitance of RuO2∙xH2O loaded on benzenesulfonic functionalized MWCNTs. Electrochim Acta 55:3681–3686

    Article  Google Scholar 

  75. Zhang J, Ma J, Zhang LL et al (2010) Template synthesis of tubular ruthenium oxides for supercapacitor applications. J Phys Chem C 114:13608–13613

    Article  Google Scholar 

  76. Kim JY, Kim KH, Park SH et al (2010) Microwave-polyol synthesis of nanocrystalline ruthenium oxide nanoparticles on carbon nanotubes for electrochemical capacitors. Electrochim Acta 55:8056–8061

    Article  Google Scholar 

  77. Sieben JM, Morallón E, Cazorla-Amorós D (2013) Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods. Energy 58:519–526

    Article  Google Scholar 

  78. Liang YY, Li HL, Zhang XG (2007) Solid state synthesis of hydrous ruthenium oxide for supercapacitors. J Power Sources 173:599–605

    Article  Google Scholar 

  79. Chen IL, Wei YC, Chen TY et al (2014) Oxidative precipitation of ruthenium oxide for supercapacitors: enhanced capacitive performances by adding cetyltrimethylammonium bromide. J Power Sources 268:430–438

    Article  Google Scholar 

  80. Devadas A, Baranton S, Napporn TW et al (2011) Tailoring of RuO2 nanoparticles by microwave assisted “Instant method” for energy storage applications. J Power Sources 196:4044–4053

    Article  Google Scholar 

  81. Wu X, Zeng Y, Gao H et al (2013) Template synthesis of hollow fusiform RuO2∙xH2O nanostructure and its supercapacitor performance. J Mater Chem A 1:469–472

    Article  Google Scholar 

  82. Chou JC, Chen YL, Yang MH et al (2013) RuO2/MnO2 core–shell nanorods for supercapacitors. J Mater Chem A 1:8753–8758

    Article  Google Scholar 

  83. Hu CC, Guo HY, Chang KH et al (2009) Anodic composite deposition of RuO2∙xH2O – TiO2 for electrochemical supercapacitors. Electrochem Commun 11:1631–1634

    Article  Google Scholar 

  84. Su YF, Wu F, Bao LY et al (2007) RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor. New Carbon Mater 22:53–57

    Article  Google Scholar 

  85. Lee Y, Kim B, Jung HJ et al (2012) Hierarchically grown single crystalline RuO2 nanorods on vertically aligned few-walled carbon nanotubes. Mater Lett 89:115–117

    Article  Google Scholar 

  86. Chen PC, Shen G, Shi Y et al (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403–4411

    Article  Google Scholar 

  87. Soin N, Roy SS, Mitra SK et al (2012) Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J Mater Chem 22:14944–14950

    Article  Google Scholar 

  88. Wang W, Guo S, Lee I et al (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:1–9

    Google Scholar 

  89. Zhao X, Sanchez BM, Dobson PJ et al (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855

    Article  Google Scholar 

  90. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    Article  Google Scholar 

  91. Park BO, Lokhande CD, Park HS et al (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness. J Power Sources 134:148–152

    Article  Google Scholar 

  92. Sugimoto W, Shibutani T, Murakami Y et al (2002) Charge storage capabilities of rutile-type RuO2 − VO2 solid solution for electrochemical supercapacitors. Electrochem Solid State Lett 5:A170–172

    Article  Google Scholar 

  93. Toupin M, Brousse T, Be´langer D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  Google Scholar 

  94. Nam KW, Kim MG, Kim KB (2007) In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J Phys Chem C 111:749–758

    Article  Google Scholar 

  95. Nakayama M, Tanaka A, Sato Y et al (2005) Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir 21:5907–5913

    Article  Google Scholar 

  96. Yuan CZ, Zhang XG, Hou LR et al (2010) Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors. J Mater Chem 20:10809–10816

    Article  Google Scholar 

  97. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  98. Zhu G, Deng L, Wang J et al (2013) Hydrothermal preparation and the capacitance of hierarchical MnO2 nanoflower. Colloid Surf A 434:42–48

    Article  Google Scholar 

  99. Zhang X, Yu P, Zhang H et al (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    Article  Google Scholar 

  100. Song Z, Liu W, Zhao M et al (2013) A facile template-free synthesis of α − MnO2 nanorods for supercapacitor. J Alloy Compd 560:151–155

    Article  Google Scholar 

  101. Zhou M, Zhang X, Wei J et al (2011) Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α − MnO2 nanostructures. J Phys Chem C 115:1398–1402

    Article  Google Scholar 

  102. Wan C, Cheng M, Zhang Q et al (2013) Preparation of MnO2 nanostructures by controlled crystal growth and its pseudocapacitive properties. Powder Technol 235:706–711

    Article  Google Scholar 

  103. Li GR, Feng ZP, Ou YN et al (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26:2209–2213

    Article  Google Scholar 

  104. Wang YT, Lu AH, Li WC (2012) Mesoporous manganese dioxide prepared under acidic conditions as high performance electrode material for hybrid supercapacitors. Microporous Mesoporous Mater 153:247–253

    Article  Google Scholar 

  105. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  Google Scholar 

  106. Iranagh SA, Eskandarian L, Mohammadi R (2013) Synthesis of MnO2-polyaniline nanofiber composites to produce high conductive polymer. Synthetic Met 172:49–53

    Article  Google Scholar 

  107. Tang W, Hou YY, Wang XJ et al (2012) A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197:330–333

    Article  Google Scholar 

  108. He S, Chen W (2014) High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J Power Sources 262:391–400

    Article  Google Scholar 

  109. Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4:1058–1064

    Article  Google Scholar 

  110. Zhao X, Zhang LL, Murali S et al (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6:5404–5412

    Article  Google Scholar 

  111. Wu ZS, Ren WC, Wang DW et al (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  Google Scholar 

  112. Cheng Q, Tang J, Ma J et al (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925

    Article  Google Scholar 

  113. Kim KS, Park SJ (2012) Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes. J Solid State Electrochem 16:2751–2758

    Article  Google Scholar 

  114. Bao L, Zang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220

    Article  Google Scholar 

  115. Dong S, Chen X, Gu L et al (2011) One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ Sci 4:3502–3508

    Article  Google Scholar 

  116. Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211

    Article  Google Scholar 

  117. Yu G, Hu L, Vosgueritchian M et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  Google Scholar 

  118. Su Z, Yang C, Xie B et al (2014) Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci 7:2652–2659

    Article  Google Scholar 

  119. Hou Y, Cheng Y, Hobson T et al (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  Google Scholar 

  120. Zhang H, Cao GP, Wang ZY et al (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668

    Article  Google Scholar 

  121. Liu Y, Zhang BH, Yang YQ et al (2013) Polypyrrole-coated α − MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J Mater Chem A 1:13582–13587

    Article  Google Scholar 

  122. Tao T, Chen Q, Hu H et al (2012) MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Mater Lett 66:102–105

    Article  Google Scholar 

  123. Brezesinski T, Wang J, Tolbert SH et al (2010) Ordered mesoporous α − MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  Google Scholar 

  124. Farsi H, Gobal F, Raissi H et al (2010) On the pseudocapacitive behavior of nanostructured molybdenum oxide. J Solid State Electrochem 14:643–650

    Article  Google Scholar 

  125. Shakir I, Shahid M, Yang HW et al (2010) Structural and electrochemical characterization of α − MoO3 nanorod-based electrochemical energy storage devices. Electrochim Acta 56:376–380

    Article  Google Scholar 

  126. Hu JB, Ramadan A, Luo F et al (2011) One-step molybdate ion assisted electrochemical synthesis of α − MoO3-decorated graphene sheets and its potential applications. J Mater Chem 21:15009–15014

    Article  Google Scholar 

  127. Zheng L, Xu Y, Jin D et al (2011) Polyaniline-intercalated molybdenum oxide nanocomposites: simultaneous synthesis and their enhanced application for supercapacitor. Chem Asian J 6:1505–1514

    Article  Google Scholar 

  128. Jiang F, Li W, Zou R et al (2014) MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 7:72–79

    Article  MathSciNet  Google Scholar 

  129. Shakir I, Shahid M, Nadeem M et al (2012) Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochim Acta 72:134–137

    Article  Google Scholar 

  130. Srinivasan V, Weidner JW (2002) Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J Power Sources 108:15–20

    Article  Google Scholar 

  131. Liu TC, Pell WG, Conway BE (1999) Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim Acta 44:2829–2842

    Article  Google Scholar 

  132. Shan Y, Gao L (2007) Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater Chem Phys 103:206–210

    Article  Google Scholar 

  133. Gong LY, Liu XH, Su LH et al (2012) Synthesis and electrochemical capacitive behaviors of Co3O4 nanostructures from a novel biotemplating technique. J Solid State Electrochem 16:297–304

    Article  Google Scholar 

  134. Vijayakumar S, Ponnalagi AK, Nagamuthu S et al (2013) Microwave assisted synthesis of # nanoparticles for high-performance supercapacitors. Electrochim Acta 106:500–505

    Article  Google Scholar 

  135. Liu X, Long Q, Jiang C et al (2013) Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. Nanoscale 5:6525–6529

    Article  Google Scholar 

  136. Fan Z, Chen J, Cui K et al (2007) Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52:2959–2965

    Article  Google Scholar 

  137. Huang S, Jin YH, Jia MQ (2013) Preparation of graphene/Co3O4 composites by hydrothermal method and their electrochemical properties. Electrochim Acta 95:139–145

    Article  Google Scholar 

  138. Park S, Kim S (2013) Effect of carbon blacks filler addition on electrochemical behaviors of Co3O4/graphene nanosheets as a supercapacitor electrodes. Electrochim Acta 89:516–522

    Article  Google Scholar 

  139. Wang XW, Liu SQ, Wang HY et al (2012) Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. J Solid State Electrochem 16:3593–3602

    Article  Google Scholar 

  140. Zhong JH, Wang AL, Li GR et al (2012) Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem 22:5656–5665

    Article  Google Scholar 

  141. Qing XX, Liu SQ, Huang KL et al (2011) Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim Acta 56:4985–4991

    Article  Google Scholar 

  142. Wang X, Liu B, Liu R et al (2014) Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chem Int Ed 53:1849–1853

    Article  Google Scholar 

  143. Zhao QQ, Jiao LF, Peng WX et al (2012) Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J Power Sources 199:350–354

    Article  Google Scholar 

  144. Wu CZ, Zhang XD, Dai J et al (2011) Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. J Mater Chem 21:4509–4517

    Article  Google Scholar 

  145. Ni J, Jiang WT, Yu K et al (2011) Hydrothermal synthesis of VO2(B) nanostructures and application in aqueous Li-ion battery. Electrochim Acta 56:2122–2126

    Article  Google Scholar 

  146. Sediri F, Gharbi N (2009) Controlled hydrothermal synthesis of VO2(B) nanobelts. Mater Lett 63:15–18

    Article  Google Scholar 

  147. Ganganagappa N, Siddaramanna A (2012) One step synthesis of monoclinic VO2(B) bundles of nanorods: cathode for Li ion battery. Mater Charact 68:58–62

    Article  Google Scholar 

  148. Kong FY, Li M, Yao XY et al (2012) Template-free hydrothermal synthesis of VO2 hollow microspheres. Cryst Eng Comm 14:3858–3861

    Article  Google Scholar 

  149. Shao J, Li XY, Qu QT et al (2012) One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors. J Power Sources 219:253–257

    Article  Google Scholar 

  150. Wang H, Yi H, Chen X et al (2014) One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A 2:1165–1173

    Article  Google Scholar 

  151. Liang LY, Liu HM, Yang WS (2013) Fabrication of VO2(B) hybrid with multiwalled carbon nanotubes to form a coaxial structure and its electrochemical capacitance performance. J Alloys Compd 559:167–173

    Article  Google Scholar 

  152. Sathiya M, Prakash AS, Ramesha K et al (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133:16291–16299

    Article  Google Scholar 

  153. Rui XH, Zhu JX, Liu WL et al (2011) Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Adv 1:117–122

    Article  Google Scholar 

  154. Qu QT, Liu LL, Wu YP et al (2013) Electrochemical behavior of V2O5∙0.6H2O nanoribbons in neutral aqueous electrolyte solution. Electrochim Acta 96:8–12

    Article  Google Scholar 

  155. Fu L, Liu H, Li C et al (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50:881–928

    Article  Google Scholar 

  156. Qu QT, Shi Y, Li LL et al (2009) V2O5∙0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11:1325–1328

    Article  Google Scholar 

  157. Wee G, Soh HZ, Cheah YL et al (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20:6720–6725

    Article  Google Scholar 

  158. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490

    Article  Google Scholar 

  159. Yu L, Zhao CX, Long X et al (2009) Ultrasonic synthesis and electrochemical characterization of V2O5/mesoporous carbon composites. Microporous Mesoporous Mater 126:58–64

    Article  Google Scholar 

  160. Fang WC (2008) Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors. J Phys Chem C 112:11552–11555

    Article  Google Scholar 

  161. Bao J, Zhang X, Bai L et al (2014) All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5∙H2O/graphene composite. J Mater Chem A 2:10876–10881

    Article  Google Scholar 

  162. Cao L, Zhu J, Li Y et al (2014) Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. J Mater Chem A 2:13136–13142

    Article  Google Scholar 

  163. Yang Y, Kim D, Yang M et al (2011) Vertically aligned mixed V2O5 − TiO2 nanotube arrays for supercapacitor applications. Chem Commun 47:7746–7748

    Article  Google Scholar 

  164. Qu QT, Zhu YS, Gao XW et al (2012) Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater 2:950–955

    Article  Google Scholar 

  165. Chen CY, Chiang CY, Shih SJ et al (2013) High supercapacitive performance of sol–gel ZnO-doped manganese oxide coatings. Thin Solid Films 528:61–66

    Article  Google Scholar 

  166. Aravinda LS, Nagaraja KK, Nagaraja HS et al (2013) ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim Acta 95:119–124

    Article  Google Scholar 

  167. Chen YX, Zhao XQ, Sha B et al (2008) Stacking fault directed growth of thin ZnO nanobelt. Mater Lett 62:2369–2371

    Article  Google Scholar 

  168. Jeong JS, Lee JY, Cho JH et al (2005) Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem Mater 17:2752–2756

    Article  Google Scholar 

  169. Lao JY, Huang JY, Wang DZ et al (2003) ZnO nanobridges and nanonails. Nano Lett 3:235–238

    Article  Google Scholar 

  170. Li C, Fang GJ, Liu NS et al (2007) Structural, photoluminescence, and field emission properties of vertically well-aligned ZnO nanorod arrays. J Phys Chem C 111:12566–12571

    Article  Google Scholar 

  171. Kalpana D, Omkumar KS, Kumar SS et al (2006) A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim Acta 52:1309–1315

    Article  Google Scholar 

  172. Jayalakshmi M, Palaniappa M, Balasubramanian K (2008) Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int J Electrochem Sci 3:96–103

    Google Scholar 

  173. Zhang YP, Sun XW, Pan LK et al (2009) Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics 180:1525–1528

    Article  Google Scholar 

  174. Park KW, Jung JH (2012) Spectroscopic and electrochemical characteristics of a carboxylated graphene–ZnO composites. J Power Sources 199:379–385

    Article  Google Scholar 

  175. Dong XC, Cao YF, Wang J et al (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364–4369

    Article  Google Scholar 

  176. Yu MP, Sun HT, Sun X et al (2013) Hierarchical Al-doped and hydrogenated ZnO nanowire@MnO2 ultra-thin nanosheet core/shell arrays for high-performance supercapacitor electrode. Int J Electrochem Sci 8:2313–2329

    Google Scholar 

  177. Li GR, Wang ZL, Zheng FL et al (2011) ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. J Mater Chem 21:4217–4221

    Article  Google Scholar 

  178. Yang PH, Xiao X, Li YZ et al (2013) Hydrogenated ZnO core shell nanocables for flexible supercapacitors and self powered systems. ACS Nano 7:2617–2626

    Article  Google Scholar 

  179. Trang NT, Ngoc HV, Lingappan N et al (2014) A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices. Nanoscale 6:2434–2439

    Article  Google Scholar 

  180. Pang H, Zhang B, Du JM et al (2012) Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. RSC Adv 2:2257–2261

    Article  Google Scholar 

  181. Wang HW, Yi H, Chen X et al (2013) Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim Acta 105:353–361

    Article  Google Scholar 

  182. Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3:2063–2073

    Article  Google Scholar 

  183. Zhang XJ, Shi WH, Zhu JX et al (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3:643–652

    Article  Google Scholar 

  184. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  Google Scholar 

  185. Zhang G, Yu L, Hoster HE et al (2013) Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 5:877–881

    Article  Google Scholar 

  186. Yuan CZ, Hou LR, Feng YL et al (2013) Sacrificial template synthesis of short mesoporous NiO nanotubes and their application in electrochemical capacitors. Electrochim Acta 88:507–512

    Article  Google Scholar 

  187. Chen H, Xu JL, Xu XW et al (2013) Preparation of mesoporous NiO with excellent pseudocapacitive behavior. Eur J Inorg Chem 2013:1105–1108

    Article  Google Scholar 

  188. Wang XY, Yi LH, Liu L et al (2013) Preparation and capacitive properties of the core–shell structure carbon aerogel microbeads- nanowhisker-like NiO composites. J Power Sources 224:317–323

    Article  Google Scholar 

  189. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. ACS Sustainable Chem Eng 1:1110–1118

    Article  Google Scholar 

  190. Bello A, Makgopa K, Fabiane M et al (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712

    Article  Google Scholar 

  191. Xia X, Tu J, Mai Y et al (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chemistry 17:10898–10905

    Article  Google Scholar 

  192. Wang H, Yi H, Chen X et al (2014) Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J Mater Chem A 2:3223–3230

    Article  Google Scholar 

  193. Liu MM, Chang J, Sun J et al (2013) A facile preparation of NiO/Ni composites as high-performance pseudocapacitor materials. RSC Adv 3:8003–8008

    Article  Google Scholar 

  194. Lu ZY, Chang Z, Liu JF et al (2011) Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res 4:658–665

    Article  Google Scholar 

  195. Zhang Y, Guo Z (2014) Green synthesis of open porous NiO films with an excellent capacitance performance. Chem Commun 50:3443–3446

    Article  Google Scholar 

  196. Lam LT, Louey R (2006) Development of ultra-battery for hybrid-electric vehicle applications. J Power Sources 158:1140–1148

    Article  Google Scholar 

  197. Yu N, Gao L, Zhao S et al (2009) Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim Acta 54:3835–3841

    Article  Google Scholar 

  198. Shen PK, Wei XL (2003) Morphologic study of electrochemically formed lead dioxide. Electrochim Acta 48:1743–1747

    Article  Google Scholar 

  199. Bartlett PN, Dunford T, Ghanem MA (2002) Templated electrochemical deposition of nanostructured macroporous PbO2. J Mater Chem 12:3130–3135

    Article  Google Scholar 

  200. Ding LX, Zheng FL, Wang JW et al (2012) Super-large dendrites composed of trigonal PbO2 nanoplates with enhanced performances for electrochemical devices. Chem Commun 48:1275–1277

    Article  Google Scholar 

  201. Perret P, Khani Z, Brousse T et al (2011) Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochim Acta 56:8122–8128

    Article  Google Scholar 

  202. Ni JF, Wang HB, Qu YH et al (2013) PbO2 electrodeposited on graphite for hybrid supercapacitor applications. Phys Scr 87:1–4

    Article  Google Scholar 

  203. Dan YY, Lin HB, Liu XL et al (2012) Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material. Electrochim Acta 83:175–182

    Article  Google Scholar 

  204. Su D, Ahn HJ, Wang G (2013) SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49:3131–3133

    Article  Google Scholar 

  205. Ding H, Zhu JH, Jiang J et al (2012) Preparation and gas-sensing property of ultra-fine NiO/SnO2 nano-particles. RSC Adv 2:10324–10329

    Article  Google Scholar 

  206. Manivel P, Ramakrishnan S, Kothurkar NK et al (2013) Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Mater Res Bull 48:640–645

    Article  Google Scholar 

  207. Rao CRK, Vijayan M, Anwar S et al (2011) Hydrolysis of SnCl2 on polyaniline: Formation of conducting PAni-SnO2 composite with enhanced electrochemical properties. J Appl Polym Sci 124:4819–4826

    Google Scholar 

  208. Davazoglou D (1997) Optical properties of SnO2 thin films grown by atmospheric pressure chemical vapour deposition oxidizing SnCl4. Thin Solid Films 302:204–213

    Article  Google Scholar 

  209. Mishra S, Ghanshyam C, Ram N et al (2002) Alcohol sensing of tin oxide thin film prepared by sol-gel process. Bull Mater Sci 25:231–234

    Article  Google Scholar 

  210. Jiao Z, Wan XJ, Zhao B et al (2008) Effects of electron beam irradiation on tin dioxide gas sensors. Bull Mater Sci 31:83–86

    Article  Google Scholar 

  211. Patil UM, Salunkhe RR, Gurav KV et al (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255:2603–2607

    Article  Google Scholar 

  212. Shinde DV, Lee DY, Patil SA et al (2013) Anodically fabricated self-organized nanoporous tin oxide film as a supercapacitor electrode material. RSC Adv 3:9431–9435

    Article  Google Scholar 

  213. Pusawale SN, Deshmukh PR, Lokhande CD (2011) Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl Surf Sci 257:9498–9502

    Article  Google Scholar 

  214. Hwang SW, Hyun SH (2007) Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors. J Power Sources 172:451–459

    Article  Google Scholar 

  215. Lim SP, Huang NM, Lim HN (2013) Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram Int 39:6647–6655

    Article  Google Scholar 

  216. Hsieh CT, Lee WY, Lee CE et al (2014) Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites. J Phys Chem C 118:15146–15153

    Article  Google Scholar 

  217. Wang L, Chen L, Yan B et al (2014) In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J Mater Chem A 2:8334–8341

    Article  Google Scholar 

  218. Xu CH, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21:11253–11258

    Article  Google Scholar 

  219. Wang WJ, Hao QL, Lei W et al (2012) Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv 2:10268–10274

    Article  Google Scholar 

  220. Wang YG, Luo JY, Wang CX et al (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds. J Electrochem Soc 153:A1425–1431

    Article  Google Scholar 

  221. Tang W, Liu LL, Tian S et al (2010) Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem Commun 12:1524–1526

    Article  Google Scholar 

  222. Wang GJ, Qu QT, Wang B et al (2009) Electrochemical behavior of LiCoO2 in a saturated aqueous LiSO4 solution. Electrochim Acta 54:1199–1203

    Article  Google Scholar 

  223. Wang GJ, Fu LJ, Zhao NH et al (2007) An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed 119:299–301

    Article  Google Scholar 

  224. Wang GJ, Yang LC, Qu QT et al (2010) An aqueous rechargeable lithium battery based on doping and intercalation mechanisms. J Solid State Electrochem 14:865–869

    Article  Google Scholar 

  225. Winter M, Besenhard JO, Spahr ME et al (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  Google Scholar 

  226. Wu YP, Yuan XY, Dong C et al (2012) Lithium ion batteries: practice and applications, 2nd edn. Chemical Industry Press, Beijing

    Google Scholar 

  227. Shaju KM, Bruce PG (2008) A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem Mater 20:5557–5562

    Article  Google Scholar 

  228. Wu L, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264:1115–1118

    Article  Google Scholar 

  229. Zhao MS, Song XP, Wang F et al (2011) Electrochemical performance of single crystalline spinel LiMn2O4 nanowires in an aqueous LiNO3 solution. Electrochim Acta 56:5673–5678

    Article  Google Scholar 

  230. Qu QT, Fu LJ, Zhan XY et al (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci 4:3985–3990

    Article  Google Scholar 

  231. Stojković IB, Cvjetićanin ND, Mentus SV (2010) The improvement of the Li-ion insertion behaviour of Li1.05Cr1.05Mn1.85O4 in an aqueous medium upon addition of vinylene carbonate. Electrochem Commun 12:371–373

    Article  Google Scholar 

  232. Wang FX, Xiao SY, Shi Y et al (2013) Spinel LiNixMn2-xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochim Acta 93:301–306

    Article  Google Scholar 

  233. Yuan A, Tian L, Xu W et al (2010) Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J Power Sources 195:5032–5038

    Article  Google Scholar 

  234. Wang FX, Xiao SY, Zhu YS et al (2014) Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. J Power Sources 246:19–23

    Article  Google Scholar 

  235. Tang W, Tian S, Liu LL et al (2011) Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:205–208

    Article  Google Scholar 

  236. Wang FX, Xiao SY, Gao XW et al (2013) Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors. J Power Sources 242:560–565

    Article  Google Scholar 

  237. Wang GJ, Zhang HP, Fu LJ et al (2007) Aqueous rechargeable lithium battery (ARLB) based on LiV3O8 and LiMn2O4 with good cycling performance. Electrochem Commun 9:1873–1876

    Article  Google Scholar 

  238. Liu L, Tian F, Wang X et al (2012) Electrochemical behavior of spherical LiNi1/3Co1/3Mn1/3O2 as cathode material for aqueous rechargeable lithium batteries. J Solid State Electrochem 16:491–497

    Article  Google Scholar 

  239. Wang YG, Lou JY, Wu W et al (2007) Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds. J Electrochem Soc 154:A228–234

    Article  Google Scholar 

  240. Wang GJ, Fu LJ, Wang B et al (2007) An aqueous rechargeable lithium battery based on LiV3O8 and Li[Ni1/3Co1/3Mn1/3]O2. J Appl Electrochem 38:579–581

    Article  Google Scholar 

  241. Zhao Y, Wang YY, Lai QY et al (2009) Pseudocapacitance properties of AC/LiNi1/3Co1/3Mn1/3O2 asymmetric supercapacitor in aqueous electrolyte. Synthetic Met 159:331–337

    Article  Google Scholar 

  242. Zheng J, Chen JJ, Jia X et al (2010) Electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 in aqueous electrolyte. J Electrochem Soc 157:A702–706

    Article  Google Scholar 

  243. Shivashankaraiah RB, Manjunatha H, Mahesh KC et al (2012) Electrochemical characterization of polypyrrole–LiNi1/3Co1/3Mn1/3O2 composite cathode material for aqueous rechargeable lithium batteries. J Solid State Electrochem 16:1279–1290

    Article  Google Scholar 

  244. Parant JP, Olazcuaga R, Devalette M et al (1971) Sur quelques nouvelles phases de formule NaxMnO2. J Solid State Chem 3:1–11

    Article  Google Scholar 

  245. Mendiboure A, Delmas C, Hagenmuller P (1985) Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J Solid State Chem 57:323–331

    Article  Google Scholar 

  246. Hoppe R, Brachtel G, Jansen M (1975) Zur kenntnis der oxomanganate(III): Über LiMno2 und β − NaMnO2. Z Anorg Allg Chem 417:1–10

    Article  Google Scholar 

  247. Ma XH, Chen HL, Ceder GB (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158:A1307–1312

    Article  Google Scholar 

  248. Doeff MM, Richardson TJ, Kepley L (1996) Lithium insertion processes of orthorhombic NaxMnO2 -based electrode materials. J Electrochem Soc 143:2507–2516

    Article  Google Scholar 

  249. Sauvage F, Laffont L, Tarascon JM et al (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294

    Article  Google Scholar 

  250. Qu QT, Shi Y, Tian S et al (2009) A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J Power Sources 194:1222–1225

    Article  Google Scholar 

  251. Zhang BH, Liu Y, Chang Z et al (2014) Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J Power Sources 253:98–103

    Article  Google Scholar 

  252. Athouël L, Moser F, Dugas R et al (2008) Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J Phys Chem C 112:7270–7277

    Article  Google Scholar 

  253. Lu YL, Wei M, Wang ZQ et al (2004) Characterization of structure and electrochemical properties of lithium manganese oxides for lithium secondary batteries hydrothermally synthesized from δ − KxMnO2. Electrochim Acta 49:2361–2367

    Article  Google Scholar 

  254. Lu Y, Yang L, Wei M et al (2007) Studies on structure and electrochemical properties of pillared M−MnO2 (M = Ba2+, Sr2+, ZrO2+). J Solid State Electrochem 11:1157–1162

    Article  Google Scholar 

  255. Chen RJ, Whittingham MS (1997) Cathodic behavior of alkali manganese oxides from permanganate. J Electrochem Soc 144:L64–67

    Article  Google Scholar 

  256. Yoshitomo O, Takayoshi S, Wang LZ et al (2003) Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc 125:3568–3575

    Article  Google Scholar 

  257. Wang LZ, Omomo Y, Sakai N et al (2003) Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations. Chem Mater 15:2873–2878

    Article  Google Scholar 

  258. Nakayama M, Konishi S, Tagashira H et al (2005) Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions. Langmuir 21:354–359

    Article  Google Scholar 

  259. Ching S, Landrigan JA, Jorgensen ML (1995) Sol-Gel synthesis of birnessite from KMnO2 and simple sugars. Chem Mater 7:1604–1606

    Article  Google Scholar 

  260. Shchukin DG, Sukhorukov GB (2004) Nanoparticle synthesis in engineered organic nanoscale reactors. Adv Mater 16:671–682

    Article  Google Scholar 

  261. Tartaj P (2012) Layered manganates from soft-templates: preparation, characterization and enhanced dye demethylation capabilities. J Mater Chem 22:17718–17723

    Article  Google Scholar 

  262. Qu QT, Li L, Tian S et al (2010) A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2∙0.6H2O. J Power Sources 195:2789–2794

    Article  Google Scholar 

  263. Zhang BH, Liu Y, Chang Z et al (2014) Nanowire K0.19MnO2 from hydrothermal method as cathode material for aqueous supercapacitors of high energy density. Electrochim Acta 130:693–698

    Article  Google Scholar 

  264. Reddy RN, Reddy RG (2003) Sol–gel MnO2 as an electrode material for electrochemical capacitors. J Power Sources 124:330–337

    Article  Google Scholar 

  265. Shao J, Li XY, Qu QT et al (2013) Study on different power and cycling performance of crystalline KxMnO2 ∙ nH2O as cathode material for supercapacitors in Li2SO4, Na2SO4, and K2SO4 aqueous electrolytes. J Power Sources 223:56–61

    Article  Google Scholar 

  266. Kim SH, Kim SJ, Oh SM (1999) Preparation of layered MnO2 via thermal decomposition of KMnO2 and its electrochemical characterizations. Chem Mater 11:557–563

    Article  Google Scholar 

  267. Wu YQ, Chen XY, Ji PT et al (2011) Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim Acta 56:7517–7522

    Article  Google Scholar 

  268. Wei TY, Chen CH, Chien HC et al (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347–351

    Article  Google Scholar 

  269. Alca´ ntara R, Jaraba M, Lavela P et al (2002) NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847–2848

    Article  Google Scholar 

  270. Kobayashi Y, Ke XL, Hata H et al (2008) Soft chemical conversion of layered double hydroxides to superparamagnetic spinel platelets. Chem Mater 20:2374–2381

    Article  Google Scholar 

  271. Cabo M, Pellicer E, Rossinyol E et al (2009) Mesoporous NiCo2O4 spinel: influence of calcination temperature over phase purity and thermal stability. Cryst Growth Des 9:4814–4821

    Article  Google Scholar 

  272. Verma S, Joshi HM, Jagadale T et al (2008) Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption. J Phys Chem C 112:15106–15112

    Article  Google Scholar 

  273. Li YN, Zhang P, Guo ZP et al (2008) NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochem Solid-State Lett 11:A64–67

    Article  Google Scholar 

  274. Hsu CT, Hu CC (2013) Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors. J Power Sources 242:662–671

    Article  Google Scholar 

  275. Kong LB, Lu C, Liu MC et al (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17:1463–1471

    Article  Google Scholar 

  276. Zou RJ, Xu KB, Wang T et al (2013) Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J Mater Chem A 1:8560–8566

    Article  Google Scholar 

  277. Zhang G, Lou XW (2013) Controlled growth of NiCo(2)O(4) nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3:1–6

    Google Scholar 

  278. Huang L, Chen D, Ding Y et al (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    Article  Google Scholar 

  279. Du J, Zhou G, Zhang H et al (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5:7405–7409

    Article  Google Scholar 

  280. He GY, Wang L, Chen HQ et al (2013) Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material. Mater Lett 98:164–167

    Article  Google Scholar 

  281. Wang QF, Wang XF, Liu B et al (2013) NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J Mater Chem A 1:2468–2473

    Article  Google Scholar 

  282. Liu XY, Zhang YQ, Xia XH et al (2013) Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J Power Sources 239:157–163

    Article  Google Scholar 

  283. Zhou Q, Xing J, Gao Y et al (2014) Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl Mater Interfaces 6:11394–11402

    Article  Google Scholar 

  284. Yu L, Zhang G, Yuan C et al (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139

    Article  Google Scholar 

  285. Liu MC, Kong LB, Lu C et al (2012) A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl Mater Interfaces 4:4631–4636

    Article  Google Scholar 

  286. Zhou W, Kong D, Jia X et al (2014) NiCo2O4 nanosheet supported hierarchical core–shell arrays for high-performance supercapacitors. J Mater Chem A 2:6310–6315

    Article  Google Scholar 

  287. Karthikeyan K, Kalpana D, Renganathan NG (2008) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110

    Article  Google Scholar 

  288. Sharma Y, Sharma N, Subba Rao GV et al (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861

    Article  Google Scholar 

  289. Deng D, Lee JY (2011) Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage. Nanotechnology 22:1–9

    Google Scholar 

  290. Luo W, Hu XL, Sun YM et al (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921

    Article  Google Scholar 

  291. Qiu YC, Yang SH, Deng H et al (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439–4444

    Article  Google Scholar 

  292. Du N, Xu Y, Zhang H et al (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324

    Article  Google Scholar 

  293. Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Article  Google Scholar 

  294. Liu HW, Wang J (2013) One-pot synthesis of ZnCo2O4 nanorod anodes for high power lithium ions batteries. Electrochim Acta 92:371–375

    Article  Google Scholar 

  295. Reddy MV, Kenrick KYH, Wei TY et al (2011) Nano-ZnCo2O4 material preparation by molten salt method and its electrochemical properties for lithium batteries. J Electrochem Soc 158:A1423–1430

    Article  Google Scholar 

  296. Davis M, Gümeci C, Black B et al (2012) Tailoring cobalt doped zinc oxide nanocrystals with high capacitance activity: factors affecting structure and surface morphology. RSC Adv 2:2061–2066

    Article  Google Scholar 

  297. Zhou G, Zhu J, Chen Y et al (2014) Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochim Acta 123:450–455

    Article  Google Scholar 

  298. Bao F, Wang X, Zhao X et al (2014) Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv 4:2393–2397

    Article  Google Scholar 

  299. Wang S, Pu J, Tong Y et al (2014) ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J Mater Chem A 2:5434–5440

    Article  Google Scholar 

  300. Ding Y, Wan Y, Min YL et al (2008) General synthesis and phase control of metal molybdate hydrates MMoO4 ∙ nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg Chem 47:7813–7823

    Article  Google Scholar 

  301. Livage C, Hynaux A, Marrot J et al (2002) Solution process for the synthesis of the “high-pressure” phase CoMoO4 and X-ray single crystal resolution. J Mater Chem 12:1423–1425

    Article  Google Scholar 

  302. Robertson L, Duttine M, Gaudon M et al (2011) Cobalt–zinc molybdates as new blue pigments involving Co2+ in distorted trigonal bipyramids and octahedra. Chem Mater 23:2419–2427

    Article  Google Scholar 

  303. Cherian CT, Reddy MV, Haur SC et al (2013) Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl Mater Interfaces 5:918–923

    Article  Google Scholar 

  304. Liu MC, Kong LB, Lu C et al (2013) Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater Lett 94:197–200

    Article  Google Scholar 

  305. Liu MC, Kong LB, Ma XJ et al (2012) Hydrothermal process for the fabrication of CoMoO4 ∙ 0.9H2O nanorods with excellent electrochemical behavior. New J Chem 36:1713–1716

    Article  Google Scholar 

  306. Xu ZW, Li Z, Tan XH et al (2012) Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv 2:2753–2755

    Article  Google Scholar 

  307. Xia XF, Lei W, Hao QL et al (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261

    Article  Google Scholar 

  308. Xu K, Chao J, Li W et al (2014) CoMoO4 ∙ 0.9H2O nanorods grown on reduced graphene oxide as advanced electrochemical pseudocapacitor materials. RSC Adv 4:34307–34314

    Article  Google Scholar 

  309. Mai LQ, Yang F, Zhao YL et al (2011) Hierarchical MnMoO(4)/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:1–5

    Article  Google Scholar 

  310. Guo D, Zhang HM, Yu XZ et al (2013) Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J Mater Chem A 1:7247–7254

    Article  Google Scholar 

  311. Wang X, Sumboja A, Lin M et al (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  Google Scholar 

  312. Guo D, Zhang P, Zhang HM et al (2013) NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J Mater Chem A 1:9024–9027

    Article  Google Scholar 

  313. Purushothaman KK, Cuba M, Muralidharan G (2012) Supercapacitor behavior of α − MnMoO4 nanorods on different electrolytes. Mater Res Bull 47:3348–3351

    Article  Google Scholar 

  314. Park KS, Seo SD, Shim HW et al (2012) Electrochemical performance of NixCo1-xMoO ∙ (0 ≤ x ≤ 1) nanowire anodes for lithium-ion batteries. Nanoscale Res Lett 7:1–7

    Article  Google Scholar 

  315. Liu MC, Kang L, Kong LB et al (2013) Facile synthesis of NiMoO4 center dot xH2O nanorods as a positive electrode material for supercapacitors. RSC Adv 3:6472–6478

    Article  Google Scholar 

  316. Li W, Zhang F, Dou YQ et al (2011) A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 1:382–386

    Article  Google Scholar 

  317. Zhou W, Lin LJ, Wang WJ et al (2011) Hierarchical mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J Phys Chem C 115:7126–7133

    Article  Google Scholar 

  318. Luo Y, Luo J, Jiang J et al (2012) Seed-assisted synthesis of highly ordered TiO2@Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559–6566

    Article  Google Scholar 

  319. Taberna PL, Mitra S, Poizot P et al (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater 5:567–573

    Article  Google Scholar 

  320. Jiang J, Liu JP, Zhou WW et al (2011) CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy Environ Sci 4:5000–5007

    Article  Google Scholar 

Download references

Acknowledgment

Financial supports from China National Funds for Distinguished Young Scientists (NSFC No. 51425301), NSFC (21073046 and 21463013) and STCSM (14520721800) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. B. Wen or Y. P. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, Y., Yu, F., Wang, X.W., Wen, Z.B., Zhu, Y.S., Wu, Y.P. (2016). Nanostructured Oxides as Cathode Materials for Supercapacitors. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics