Skip to main content

Nanostructured Lithium Titanates (Li4Ti5O12) for Lithium-Ion Batteries

  • Chapter
  • First Online:
Book cover Nanomaterials in Advanced Batteries and Supercapacitors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanostructured lithium titanates (Li4Ti5O12) have been intensively investigated as anode materials of Li-ion batteries due to their many advantages, such as excellent performance, outstanding safety, and excellent cycle life. This chapter firstly focuses on the crystal structure and lithium intercalation/de-intercalation mechanism of LTO, subsequently, the present status of nano-LTO including the synthesis method and structural design. Secondly, it is devoted to discussion of LTO battery performance and design,gasing mechanisms and how to suppress gasing generation. Finally, the outlook and perspective for application of LTO is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi Y, Wen L, Li F et al (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196(20):8610–8617

    Article  Google Scholar 

  2. Ferg E, Gummow RJ, Dekock A et al (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141(11):L147–L150

    Article  Google Scholar 

  3. Park KS, Benayad A, Kang DJ et al (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc 130(45):14930–14932

    Article  Google Scholar 

  4. Li BH, Han CP, He YB et al (2012) Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ Sci 5(11):9595–9602

    Article  Google Scholar 

  5. Prakash AS, Manikandan P, Ramesha K et al (2010) Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem Mater 22(9):2857–2863

    Article  Google Scholar 

  6. Rahman MM, Wang JZ, Hassan MF et al (2010) Basic molten salt process a new route for synthesis of nanocrystalline \( {\mathrm{Li}}_4{\mathrm{Ti}}_5{\mathrm{O}}_{12}-{\mathrm{Ti}\mathrm{O}}_2 \) anode material for Li-ion batteries using eutectic mixture of \( {\mathrm{Li}\mathrm{NO}}_3-\mathrm{LiOH}-{\mathrm{Li}}_2{\mathrm{O}}_2 \). J Power Sources 195(13):4297–4303

    Article  Google Scholar 

  7. Raja MW, Mahanty S, Kundu M et al (2009) Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. J AlloyS Compd 468(1-2):258–262

    Article  Google Scholar 

  8. Lu HW, Zeng W, Li YS et al (2007) Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources 164(2):874–879

    Article  Google Scholar 

  9. Sorensen EM, Barry SJ, Jung HK et al (2006) Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18(2):482–489

    Article  Google Scholar 

  10. Tang YF, Yang L, Qiu Z et al (2008) Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets. Electrochem Commun 10(10):1513–1516

    Article  Google Scholar 

  11. Tang YF, Yang L, Qiu Z et al (2009) Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries. J Mater Chem 19(33):5980–5984

    Article  Google Scholar 

  12. Cheng L, Li XL, Liu HJ et al (2007) Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Electrochem Soc 154(7):A692–A697

    Article  Google Scholar 

  13. Cheng L, Yan J, Zhu GN et al (2010) General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Mater Chem 20(3):595–602

    Article  Google Scholar 

  14. Dominko R, Gaberscek M, Bele A et al (2007) Carbon nanocoatings on active materials for Li-ion batteries. J Eur Ceram Soc 27(2-3):909–913

    Article  Google Scholar 

  15. Capsoni D, Bini M, Massarotti V et al (2009) Cr and Ni doping of Li4Ti5O12: cation distribution and functional properties. J Phys Chem C 113(45):19664–19671

    Article  Google Scholar 

  16. Capsoni D, Bini M, Massarotti V et al (2008) Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure. Chem Mater 20(13):4291–4298

    Article  Google Scholar 

  17. Nakayama M, Ishida Y, Ikuta H et al (1999) Mixed conduction for the spinel type \( \left(1-\mathrm{x}\right){\mathrm{Li}}_{4/3}{\mathrm{Ti}}_{5/3}{\mathrm{O}}_4-{\mathrm{xLiCrTiO}}_4 \) system. Solid State Ion 117(3-4):265–271

    Article  Google Scholar 

  18. Gao J, Jiang CY, Wan CR (2010) Synthesis and characterization of spherical La-Doped nanocrystalline Li4Ti5O12/C compound for lithium-ion batteries. J Electrochem Soc 157(2):K39–K42

    Article  Google Scholar 

  19. Huang SH, Wen ZY, Zhang JC et al (2006) Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery. Solid State Ion 177(9-10):851–855

    Article  Google Scholar 

  20. Huang SH, Wen ZY, Zhu XJ et al (2005) Research on Li4Ti5O12/CuxO composite anode materials for lithium-ion batteries. J Electrochem Soc 152(7):A1301–A1305

    Article  Google Scholar 

  21. Belharouak I, Koenig GM, Yumoto H et al (2012) Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells. J Electrochem Soc 159(8):A1165–A1170

    Article  Google Scholar 

  22. He YB, Ning F, Li BH et al (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J Power Sources 202:253–261

    Article  Google Scholar 

  23. Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142(8):2558–2563

    Article  Google Scholar 

  24. Ariyoshi K, Yamamoto S, Ohzuku T (2003) Three-volt lithium-ion battery with Li Ni1/2Mn3/2O4 and the zero-strain insertion material of Li Li1/3Ti5/3O4. J Power Sources 119:959–963

    Article  Google Scholar 

  25. Amatucci GG, Badway F, Du Pasquier A et al (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148(8):A930–A939

    Article  Google Scholar 

  26. Peramunage D, Abraham KM (1998) Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J Electrochem Soc 145(8):2609–2615

    Article  Google Scholar 

  27. Liu GQ, Wen L, Liu GY et al (2011) Synthesis and electrochemical properties of Li4Ti5O12. J Alloys Compd 509(22):6427–6432

    Article  Google Scholar 

  28. Yuan T, Cai R, Shao ZP (2011) Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J Phys Chem C 115(11):4943–4952

    Article  Google Scholar 

  29. Huang Z, Wang D, Lin Y et al (2014) Enhancing the high-rate performance of Li4Ti5O12 anode material for lithium-ion battery by a wet ball milling assisted solid-state reaction and ultra-high speed nano-pulverization. J Power Sources 266:60–65

    Article  Google Scholar 

  30. Lai C, Wu ZZ, Zhu YX et al (2013) Ball-milling assisted solid-state reaction synthesis of mesoporous Li4Ti5O12 for lithium-ion batteries anode. J Power Sources 226:71–74

    Article  Google Scholar 

  31. Zaghib K, Simoneau M, Armand M et al (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81:300–305

    Article  Google Scholar 

  32. Wen L, Liu G, Liu GY et al (2012) Oxygen deficient Li4Ti5O12 for high-rate lithium storage. J Chin Chem Soc-Taip 59(10):1201–1205

    Article  Google Scholar 

  33. Shin JW, Hong CH, Yoon DH (2012) Effects of TiO2 starting materials on the solid-state formation of Li4Ti5O12. J Am Ceram Soc 95(6):1894–1900

    Article  Google Scholar 

  34. Nugroho A, Kim SJ, Chung KY et al (2012) Synthesis of Li4Ti5O12 in supercritical water for Li-ion batteries: reaction mechanism and high-rate performance. Electrochim Acta 78:623–632

    Article  Google Scholar 

  35. Kavan L, Gratzel M (2002) Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem Solid State Lett 5(2):A39–A42

    Article  Google Scholar 

  36. Yuan T, Cai R, Ran R et al (2010) A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. J Alloys Compd 505(1):367–373

    Article  Google Scholar 

  37. Ning F, He YB, Li BH et al (2012) Effects of TiO2 crystal structure on the performance of Li4Ti5O12 anode material. J Alloys Compd 513:524–529

    Article  Google Scholar 

  38. Li J, Jin Y-L, Zhang X-G et al (2007) Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries. Solid State Ion 178(29–30):1590–1594

    Article  Google Scholar 

  39. Matsui E, Abe Y, Senna M et al (2008) Solid-state synthesis of 70 nm Li4Ti5O12 particles by mechanically activating intermediates with amino acids. J Am Ceram Soc 91(5):1522–1527

    Article  Google Scholar 

  40. Shen CM, Zhang XG, Zhou YK et al (2003) Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method. Mater Chem Phys 78(2):437–441

    Article  Google Scholar 

  41. Liu DQ, Lai QY, Hao YJ et al (2004) Study on synthesis and mechanism of Li4Ti5O12 by sol-gel method. Chin J Inorg Chem 20(7):829–832

    Google Scholar 

  42. Hao YJ, Lai QY, Xu ZH et al (2005) Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Solid State Ion 176(13-14):1201–1206

    Article  Google Scholar 

  43. Xiang HF, Tian BB, Lian PC et al (2011) Sol-gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. J Alloys Compd 509(26):7205–7209

    Article  Google Scholar 

  44. Zhou XL, Huang RA, Wu ZC, et al (2010) Sol-gel synthesis and electrochemical properties of spinel Li4Ti5O12 for lithium-ion batteries. In: Proceedings of the 7th national conference on Chinese functional materials and applications 2010, vols 1–3, pp 570–574

    Google Scholar 

  45. Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta 55(26):7717–7725

    Article  Google Scholar 

  46. Zhang C, Zhang Y, Wang J et al (2013) Li4Ti5O12 prepared by a modified citric acid sol-gel method for lithium-ion battery. J Power Sources 236:118–125

    Article  Google Scholar 

  47. Hao YJ, Lai QY, Lu JZ et al (2007) Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material. J Alloys Compd 439(1–2):330–336

    Article  Google Scholar 

  48. Hao YJ, Lai QY, Liu DQ et al (2005) Synthesis by citric acid sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Mater Chem Phys 94(2–3):382–387

    Article  Google Scholar 

  49. Hao YJ, Lai QY, Lu JZ et al (2006) Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol–gel method. J Power Sources 158(2):1358–1364

    Article  Google Scholar 

  50. Kalbac M, Zukalova M, Kavan L (2003) Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery. J Solid State Electrochem 8(1):2–6

    Article  Google Scholar 

  51. Rho YH, Kanamura K (2004) Preparation of Li4/3Ti5/3O4 thin film electrodes by a PVP sol-gel coating method and their electrochemical properties. J Electrochem Soc 151(1):A106–A110

    Article  Google Scholar 

  52. Yi TF, Jiang LJ, Shu J et al (2010) Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Solids 71(9):1236–1242

    Article  Google Scholar 

  53. Roy R (1994) Accelerating the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111(1):11–17

    Article  Google Scholar 

  54. Li N, Mei T, Zhu YC et al (2012) Hydrothermal synthesis of layered Li1.81H0.19Ti2O5 · xH2O nanosheets and their transformation to single-crystalline Li4Ti5O12 nanosheets as the anode materials for Li-ion batteries. Crystengcomm 14(20):6435–6440

    Article  Google Scholar 

  55. Shen LF, Uchaker E, Zhang XG et al (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506

    Article  Google Scholar 

  56. Li JR, Tang ZL, Zhang ZT (2005) Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. Electrochem Commun 7(9):894–899

    Article  Google Scholar 

  57. Fattakhova D, Krtil P (2002) Electrochemical activity of hydrothermally synthesized Li-Ti-O cubic oxides toward Li insertion. J Electrochem Soc 149(9):A1224–A1229

    Article  Google Scholar 

  58. Lee SC, Lee SM, Lee JW et al (2009) Spinel Li4Ti5O12 nanotubes for energy storage materials. JPhys Chem C 113(42):18420–18423

    Article  Google Scholar 

  59. Fang W, Ma YL, Zuo PJ et al (2013) Nano-Li4Ti5O12 pore microspheres: a high power electrode material for lithium ion batteries. Int J Electrochem Sci 8(2):1949–1956

    Google Scholar 

  60. Singhal A, Skandan G, Amatucci G et al (2004) Nanostructured electrodes for next generation rechargeable electrochemical devices. J Power Sources 129(1):38–44

    Article  Google Scholar 

  61. Sides CR, Li NC, Patrissi CJ et al (2002) Nanoscale materials for lithium-ion batteries. MRS Bull 27(8):604–607

    Article  Google Scholar 

  62. Bai Y, Wang F, Wu F et al (2008) Influence of composite LiCl-KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12. Electrochim Acta 54(2):322–327

    Article  Google Scholar 

  63. Cheng L, Liu HJ, Zhang JJ et al (2006) Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors. J Electrochem Soc 153(8):A1472–A1477

    Article  Google Scholar 

  64. Guo Q, Li S, Wang H et al (2014) Molten salt synthesis of nano-sized Li4Ti5O12 doped with Fe2O3 for use as anode material in the lithium-ion battery. RSC Adv 4(104):60327–60333

    Article  Google Scholar 

  65. Prakash AS, Khadar AMA, Patil KC et al (2002) Hexamethylenetetramine: a new fuel for solution combustion synthesis of complex metal oxides. J Mater Synth Process 10(3):135–141

    Article  Google Scholar 

  66. Bellakki MB, Shivakumara C, Baidya T et al (2008) Synthesis, structure and oxygen-storage capacity of and \( { \Pr}_{1-\mathrm{x}-\mathrm{y}}{\mathrm{Pd}}_{\mathrm{y}}{\mathrm{Zr}}_{\mathrm{x}}{\mathrm{O}}_{2-\updelta} \). Mater Res Bull 43(10):2658–2667

    Google Scholar 

  67. Patil K, Hegde M, Rattan T et al (2008) Chemistry of nanocrystalline oxide materials-combustion synthesis, properties and applications. World Scientifc, Singapore/London

    Book  Google Scholar 

  68. Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opinion Solid State Mater Sci 2(2):158–165

    Article  Google Scholar 

  69. Aruna ST, Kini NS, Rajam KS (2009) Solution combustion synthesis of \( {\mathrm{CeO}}_2-{\mathrm{CeAlO}}_3 \) nano-composites by mixture-of-fuels approach. Mater Res Bull 44(4):728–733

    Article  Google Scholar 

  70. Yuan T, Cai R, Wang K et al (2009) Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceram Int 35(5):1757–1768

    Article  Google Scholar 

  71. Li X, Lin HC, Cui WJ et al (2014) Fast solution-combustion synthesis of nitrogen-modified Li4Ti5O12 nanomaterials with improved electrochemical performance. Acs Appl Mater Interfaces 6(10):7895–7901

    Article  Google Scholar 

  72. Eslamian M, Ashgriz N (2011) Spray drying, spray pyrolysis and spray freeze drying. In: Ashgriz N (ed) Handbook of atomization and sprays. Springer, New York, pp 849–860

    Chapter  Google Scholar 

  73. Yoshikawa D, Kadoma Y, Kim J-M et al (2010) Spray-drying synthesized lithium-excess \( {\mathrm{Li}}_{4+\mathrm{x}}{\mathrm{Ti}}_{5-\mathrm{x}}{\mathrm{O}}_{12-\updelta} \) and its electrochemical property as negative electrode material for Li-ion batteries. Electrochim Acta 55(6):1872–1879

    Article  Google Scholar 

  74. Wu F, Wang Z, Li X et al (2012) Characterization of spherical-shaped Li4Ti5O12 prepared by spray drying. Electrochim Acta 78:331–339

    Article  Google Scholar 

  75. Zhang XY, Xu HR, Zhao YY et al (2014) A facile one-step spray pyrolysis method to synthesize spherical Li4Ti5O12 for lithium-ion battery. Mater Lett 129:101–103

    Article  Google Scholar 

  76. Yang KM, Ko YN, Yun JY et al (2014) Preparation of Li4Ti5O12 yolk-shell powders by spray pyrolysis and their electrochemical properties. Chem-Asian J 9(2):443–446

    Article  Google Scholar 

  77. Du GD, Winton BR, Hashim IM et al (2014) Mass production of Li4Ti5O12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. Rsc Advances 4(73):38568–38574

    Article  Google Scholar 

  78. Doan TNL, Yoo K, Hoang TKA, et al (2014) Recent developments in synthesis of \( {\mathrm{xLi}}_2{\mathrm{MnO}}_3\cdot \left(1-\mathrm{x}\right){\mathrm{LiMO}}_2 \) (\( \mathrm{M} = \mathrm{N}\mathrm{i} \), Co, Mn) cathode powders for high-energy lithium rechargeable batteries. Front Energy Res 2(36):1–7

    Google Scholar 

  79. Balaji S, Mutharasu D, Sankara Subramanian N et al (2009) A review on microwave synthesis of electrode materials for lithium-ion batteries. Ionics 15(6):765–777

    Article  Google Scholar 

  80. Dong HY, Yin YH, Zhang ZJ et al (2012) Synthesis and properties of Li4Ti5O12/C composite by a microwave-assisted method using PAM as both the template and the carbon source. Phys Scr 86(5)

    Google Scholar 

  81. Liu J, Li X, Yang J et al (2012) Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochim Acta 63:100–104

    Article  Google Scholar 

  82. Shi Y, Gao J, Abruna HD et al (2014) Rapid synthesis of Li4Ti5O12 /graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy 8:297–304

    Article  Google Scholar 

  83. Wu Y, Reddy MV, Chowdari BVR et al (2012) Electrochemical studies on electrospun Li(Li1/3Ti5/3)O4 grains as an anode for Li-ion batteries. Electrochim Acta 67:33–40

    Article  Google Scholar 

  84. Yin SY, Song L, Wang XY et al (2009) Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction. Electrochim Acta 54(24):5629–5633

    Article  Google Scholar 

  85. Liu GY, Wang HY, Liu GQ et al (2012) Facile synthesis of nanocrystalline Li4Ti5O12 by microemulsion and its application as anode material for Li-ion batteries. J Power Sources 220:84–88

    Article  Google Scholar 

  86. Nugroho A, Chang W, Kim SJ et al (2012) Superior high rate performance of core-shell Li4Ti5O12 /carbon nanocomposite synthesized by a supercritical alcohol approach. Rsc Adv 2(29):10805–10808

    Article  Google Scholar 

  87. Nugroho A, Kim SJ, Chung KY et al (2011) Facile synthesis of nanosized Li4Ti5O12 in supercritical water. Electrochem Commun 13(6):650–653

    Article  Google Scholar 

  88. Nugroho A, Kim SJ, Chang W et al (2013) Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. J Power Sources 244:164–169

    Article  Google Scholar 

  89. Nugroho A, Chung KY, Kim J (2014) A facile supercritical alcohol route for synthesizing carbon coated hierarchically mesoporous Li4Ti5O12 microspheres. J Phys Chem C 118(1):183–193

    Article  Google Scholar 

  90. Borghols WJH, Wagemaker M, Lafont U et al (2009) Size effects in the \( {\mathrm{Li}}_{4+\mathrm{x}}{\mathrm{Ti}}_5{\mathrm{O}}_{12} \) spinel. J Am Chem Soc 131(49):17786–17792

    Article  Google Scholar 

  91. Kim JH, Kang YC (2013) Electrochemical properties of nano-sized Li4Ti5O12 powders prepared by flame spray pyrolysis. Int J Electrochem Sci 8(3):3379–3389

    Google Scholar 

  92. Venkateswarlu M, Chen CH, Do JS et al (2005) Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy. J Power Sources 146(1-2):204–208

    Article  Google Scholar 

  93. Zhang N, Liu Z, Yang T et al (2011) Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries. Electrochem Commun 13(6):654–656

    Article  Google Scholar 

  94. Kim DK, Muralidharan P, Lee HW et al (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8(11):3948–3952

    Article  Google Scholar 

  95. Chen MM, Sun X, Qiao ZJ et al (2014) Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries. J Alloys Compd 601:38–42

    Article  Google Scholar 

  96. Luo HJ, Shen LF, Rui K et al (2013) Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. J Alloys Compd 572:37–42

    Article  Google Scholar 

  97. Wang XY, Shen LF, Li HS et al (2014) PEDOT coated Li4Ti5O12 nanorods: soft chemistry approach synthesis and their lithium storage properties. Electrochim Acta 129:283–289

    Article  Google Scholar 

  98. Wu SC, Guo YX, Zhou JH et al (2011) Effect of heat-treatment temperature on the structure and properties of Li4Ti5O12 nanorods prepared by the hydrothermal ion exchange method. J Inorg Mater 26(2):123–128

    Article  MathSciNet  Google Scholar 

  99. Song K, Seo DH, Jo MR et al (2014) Tailored oxygen framework of Li4Ti5O12 nanorods for high-power li ion battery. J Phys Chem Lett 5(8):1368–1373

    Article  Google Scholar 

  100. Kim J, Cho J (2007) Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochem Solid State Lett 10(3):A81–A84

    Article  Google Scholar 

  101. Jo MR, Jung YS, Kang YM (2012) Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale 4(21):6870–6875

    Article  Google Scholar 

  102. Xiao L, Chen G, Sun J et al (2013) Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J Mater Chem A 1(46):14618–14626

    Article  Google Scholar 

  103. Chen S, Xin Y, Zhou Y et al (2014) Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci 7(6):1924–1930

    Article  Google Scholar 

  104. Zhao YM, Liu GQ, Liu L et al (2009) High-performance thin-film Li4Ti5O12 electrodes fabricated by using ink-jet printing technique and their electrochemical properties. J Solid State Electrochem 13(5):705–711

    Article  Google Scholar 

  105. Yu L, Wu HB, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25(16):2296–2300

    Article  Google Scholar 

  106. Chen JZ, Yang L, Fang SH et al (2010) Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochim Acta 55(22):6596–6600

    Article  Google Scholar 

  107. Zhao L, Hu YS, Li H et al (2011) Porous Li4Ti5O12 coated with n-doped carbon from ionic liquids for li-ion batteries. Adv Mater 23(11):1385–1388

    Article  Google Scholar 

  108. Lin CF, Fan XY, Xin YL et al (2014) Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale 6(12):6651–6660

    Article  Google Scholar 

  109. Lv Y, Zhang H, Cao GP et al (2011) Phenol-formaldehyde resin-assisted synthesis of pure porous Li4Ti5O12 for rate capability improvement. Mater Res Bull 46(12):2312–2316

    Article  Google Scholar 

  110. Sun L, Wang J, Jiang K et al (2014) Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries. J Power Sources 248:265–272

    Article  Google Scholar 

  111. Shen LF, Yuan CZ, Luo HJ et al (2010) Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J Mater Chem 20(33):6998–7004

    Article  Google Scholar 

  112. Haetge J, Hartmann P, Brezesinski K et al (2011) Ordered large-pore mesoporous Li4Ti5O12 spinel thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: relationships among charge storage, electrical conductivity, and nanoscale structure. Chem Mater 23(19):4384–4393

    Article  Google Scholar 

  113. Rahman MM, Wang JZ, Hassan MF et al (2011) Amorphous carbon coated high grain boundary density dual phase \( {\mathrm{Li}}_4{\mathrm{Ti}}_5{\mathrm{O}}_{12}-{\mathrm{Ti}\mathrm{O}}_2 \): a nanocomposite anode material for li-ion batteries. Adv Energy Mater 1(2):212–220

    Article  Google Scholar 

  114. Guo X, Xiang HF, Zhou TP et al (2014) Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance. Electrochim Acta 130:470–476

    Article  Google Scholar 

  115. Sun XC, Hegde M, Wang J et al (2014) Structural analysis and electrochemical studies of carbon coated Li4Ti5O12 particles used as anode for lithium ion battery. Ecs Transactions 58(14):79–88

    Article  Google Scholar 

  116. Li TH, Shao LY, Lin XT et al (2014) High rate Li4Ti5O12 @ C anode material fabricated by a facile carbon coating method. J Electroanal Chem 722:54–59

    Article  Google Scholar 

  117. Zhu ZQ, Cheng FY, Chen J (2013) Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mate Chem A 1(33):9484–9490

    Article  Google Scholar 

  118. Guo XF, Wang CY, Chen MM et al (2012) Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. J Power Sources 214:107–112

    Article  Google Scholar 

  119. Zhu GN, Wang CX, Xia YY (2011) A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J Electrochem Soc 158(2):A102–A109

    Article  Google Scholar 

  120. Li N, Zhou GM, Li F et al (2013) A self-standing and flexible electrode of Li4Ti5O12 nanosheets with a n-doped carbon coating for high rate lithium ion batteries. Adv Funct Mater 23(43):5429–5435

    Article  Google Scholar 

  121. Shen LF, Yuan CZ, Luo HJ et al (2011) In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. J Mater Chem 21(3):761–767

    Article  Google Scholar 

  122. Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  Google Scholar 

  123. Jansen AN, Kahaian AJ, Kepler KD et al (1999) Development of a high-power lithium-ion battery. J Power Sources 81:902–905

    Article  Google Scholar 

  124. Belharouak I, Sun YK, Lu W et al (2007) On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system. J Electrochem Soc 154(12):A1083–A1087

    Article  Google Scholar 

  125. He YB Li BH Liu M et al (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2, article number 913

    Google Scholar 

  126. Gao J, Ying JR, Jiang CY et al (2009) Preparation of spherical nanocrystal LiFePO4 and Li4Ti5O12 and investigation of the LiFePO4/Li4Ti5O12 cell. J Inorg Mater 24(1):139–142

    Article  Google Scholar 

  127. Wu HM, Belharouak I, Deng H et al (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J Electrochem Soc 156(12):A1047–A1050

    Article  Google Scholar 

  128. Li W, Li X, Chen M et al (2014) AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochim Acta 139:104–110

    Article  Google Scholar 

  129. Lu W, Liu J, Sun YK et al (2007) Electrochemical performance of \( {\mathrm{Li}}_{4/3}{\mathrm{Ti}}_{5/3}{\mathrm{O}}_4/{\mathrm{Li}}_{1+\mathrm{x}}{\left({\mathrm{Ni}}_{1/3}{\mathrm{Co}}_{1/3}{\mathrm{Mn}}_{1/3}\right)}_{\left(1-\mathrm{x}\right)}{\mathrm{O}}_2 \) cell for high power applications. J Power Sources 167(1):212–216

    Article  Google Scholar 

  130. Wu K, Yang J, Liu Y et al (2013) Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. J Power Sources 237:285–290

    Article  Google Scholar 

  131. Wu K, Yang J, Zhang Y et al (2012) Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. J Appl Electrochem 42(12):989–995

    Article  Google Scholar 

  132. Panero S, Satolli D, Salomon M et al (2000) A new type of lithium-ion cell based on the Li4Ti5O12/Li2Co0.4Fe0.4Mn3.2O8 high-voltage, electrode combination. Electrochem Commun 2(11):810–813

    Article  Google Scholar 

  133. Xiang HF, Zhang X, Jin QY et al (2008) Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J Power Sources 183(1):355–360

    Article  Google Scholar 

  134. Bernhard R, Meini S, Gasteiger HA (2014) On-line electrochemical mass spectrometry investigations on the gassing behavior of Li4Ti5O12 electrodes and its origins. J Electrochem Soc 161(4):A497–A505

    Article  Google Scholar 

  135. Wen L, Wu ZY, Luo HZ et al (2015) Dual functions of carbon in Li4Ti5O12/C microspheres. J Electrochem Soc 162(2):A3038–A3044

    Article  Google Scholar 

  136. Shu J (2008) Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.0-0.5 v. Electrochem Solid State Lett 11(12):A238–A240

    Article  Google Scholar 

  137. Dedryvere R, Foix D, Franger S et al (2010) Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery. J Phys Chem C 114(24):10999–11008

    Article  Google Scholar 

  138. Zu C-X, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energ Environ Sci 4(8):2614–2624

    Article  Google Scholar 

  139. Liu GQ, Wen L, Liu GY et al (2011) Synthesis and electrochemical properties of LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12. Met Mater Int 17(4):661–664

    Article  MathSciNet  Google Scholar 

  140. Thackeray MM, Johnson CS, Vaughey JT et al (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15(23):2257–2267

    Article  Google Scholar 

  141. Plitz I, DuPasquier A, Badway F et al (2006) The design of alternative nonaqueous high power chemistries. Appl Phys A-Mater Sci Process 82(4):615–626

    Article  Google Scholar 

  142. Kim H, Park K-Y, Cho M-Y et al (2014) High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and activated carbon. Chemelectrochem 1(1):125–130

    Article  Google Scholar 

  143. Naoi K, Naoi W, Aoyagi S et al (2013) New generation “Nanohybrid supercapacitor”. Acc Chem Res 46(5):1075–1083

    Article  Google Scholar 

  144. Naoi K, Ishimoto S, Miyamoto J-i et al (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energ Environ Sci 5(11):9363–9373

    Article  Google Scholar 

  145. Naoi K (2010) ‘Nanohybrid capacitor’: the next generation electrochemical capacitors. Fuel Cells 10(5):825–833

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wen or Hong-Ze Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wen, L., Luo, HZ., Liu, GY., Zheng, HT. (2016). Nanostructured Lithium Titanates (Li4Ti5O12) for Lithium-Ion Batteries. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics