Skip to main content

Nanostructured Manganese Oxides in Supercapacitors

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The fundamental properties of supercapacitors such as basic understanding of calculations for symmetric and asymmetric systems and the effect of electrolytes are described. Manganese oxides such as MnO2 exhibited a great potential in the field of energy storage due to their structural as well as electrochemical properties, thus attracting much attention to several researchers in the past and recent years. The major contributor on the manganese oxide properties is their capability to reach relatively high pseudocapacitances, with values competing with the ones obtained from the RuO2, resulting from their multiple valence state changes. The developments of the MnO2-based materials and its derivatives (i.e. MnxOy) are being explored from the synthetic point of view as well as their emerging applications as energy storage materials from the previous years up to the current times. The need for further exploration of manganese oxide-based electrodes is motivated by their considerably low cost and more environmentally friendly as compared to other transition metals such as RuO2 and IrO2. This chapter briefly accounts the uses of nanostructured manganese oxide materials for application as supercapacitors while also summarising the respective synthesis of MnO2 and MnxOy materials such as Mn3O4 and Mn2O3 for the development of an improved electrochemical stability of supercapacitor device.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. doi:10.1039/c1cs15060j

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. doi:10.1038/nmat2297

    Article  Google Scholar 

  3. Miller JR (2012) Applied physics. Valuing reversible energy storage. Science 335:1312–1313. doi:10.1126/science.1219134

    Article  Google Scholar 

  4. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654. doi:10.1038/nnano.2010.162

    Article  Google Scholar 

  5. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614. doi:10.1039/c3ee44164d

    Article  Google Scholar 

  6. Ike IS, Sigalas I, Iyuke S, Ozoemena KI (2015) An overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors. J Power Sources 273:264–277. doi:10.1016/j.jpowsour.2014.09.071

    Article  Google Scholar 

  7. Faraji S, Ani FN (2014) Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – a review. J Power Sources 263:338–360. doi:10.1016/j.jpowsour.2014.03.144

    Article  Google Scholar 

  8. Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41. doi:10.1039/c2ee23284g

    Article  Google Scholar 

  9. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–51, 2283. doi:10.1002/adma.201304137

    Google Scholar 

  10. Burda C, Chen X, Narayanan R, El-sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  11. Tan Y, Meng L, Peng Q, Li Y (2011) One-dimensional single-crystalline Mn3O4 nanostructures with tunable length and magnetic properties of Mn3O4 nanowires. Chem Commun (Camb) 47:1172–1174. doi:10.1039/c0cc00978d

    Article  Google Scholar 

  12. Yan D, Cheng S, Zhuo RF, Chen JT, Feng JJ, Feng HT et al (2009) Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20:105706. doi:10.1088/0957-4484/20/10/105706

    Article  Google Scholar 

  13. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31. doi:10.1002/smll.201301991

    Article  Google Scholar 

  14. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide/MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  Google Scholar 

  15. Jafta CJ, Nkosi F, le Roux L, Mathe MK, Kebede M, Makgopa K et al (2013) Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors. Electrochim Acta 110:2–7. doi:10.1016/j.electacta.2013.06.096

    Article  Google Scholar 

  16. Chidembo AT, Aboutalebi SH, Konstantinov K, Jafta CJ, Liu HK, Ozoemena KI (2014) In situ engineering of urchin-like reduced graphene oxide–Mn2O3–Mn3O4 nanostructures for supercapacitors. RSC Adv 4:886. doi:10.1039/c3ra44973d

    Article  Google Scholar 

  17. Borgohain R, Selegue JP, Cheng Y-T (2014) Ternary composites of delaminated-MnO2/PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes. J Mater Chem A 2:20367–20373. doi:10.1039/C4TA04439H

    Article  Google Scholar 

  18. Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842. doi:10.1021/nn101754k

    Article  Google Scholar 

  19. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214

    Article  Google Scholar 

  20. Yu Z, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25:3302–3306. doi:10.1002/adma.201300572

    Article  Google Scholar 

  21. Wang Y, Yu SF, Sun CY, Zhu TJ, Yang HY (2012) MnO2/onion-like carbon nanocomposites for pseudocapacitors. J Mater Chem 22:17584. doi:10.1039/c2jm33558a

    Article  Google Scholar 

  22. Zheng JP (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699. doi:10.1149/1.2050077

    Article  Google Scholar 

  23. Lee HY, Lee HY, Goodenough JB, Goodenough JB (1999) Brief communication supercapacitor behavior with KCl electrolyte. J Solid State Chem 223:220–223. doi:10.1006/jssc.1998.8128

    Article  Google Scholar 

  24. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P et al (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736. doi:10.1021/nl404008e

    Article  Google Scholar 

  25. Toupin M, Brousse T, Be D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  Google Scholar 

  26. Potter R, Rossman G (1979) The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am Mineral 64:1199–1218

    Google Scholar 

  27. Fan D, Yang P (1999) Introduction to and classification of manganese deposits of China. Ore Geol Rev 15:1–13

    Article  Google Scholar 

  28. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. doi:10.1039/c0cs00127a

    Article  Google Scholar 

  29. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171. doi:10.1149/1.2352197

    Article  Google Scholar 

  30. Stoller MD, Ruoff RS (2010) Review of best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301. doi:10.1039/c0ee00074d

    Article  Google Scholar 

  31. Qu D, Qu D, Shi H, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  Google Scholar 

  32. Zhi M, Xiang C, Li J, Li M, Wu N (2012) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: review. Nanoscale 5(1):72–88. doi:10.1039/c2nr32040a

    Article  Google Scholar 

  33. Cottineau T, Toupin M, Delahaye T, Brousse T, Bélanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A Mater Sci Process 82:599–606. doi:10.1007/s00339-005-3401-3

    Article  Google Scholar 

  34. Chen P, Shen G, Shi Y, Chen H, Zhou C (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403–4411

    Article  Google Scholar 

  35. Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F, Santamaría R (2007) Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochim Acta 52:4969–4973. doi:10.1016/j.electacta.2007.01.071

    Article  Google Scholar 

  36. Béguin F, Frackowiak E (2013) Supercapacitors: materials, systems and applications. Wiley, Weinheim

    Book  Google Scholar 

  37. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842. doi:10.1039/c1ee02262h

    Article  Google Scholar 

  38. Gao Q, Demarconnay L, Raymundo-Piñero E, Béguin F (2012) Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ Sci 5:9611. doi:10.1039/c2ee22284a

    Article  Google Scholar 

  39. Staiti P, Arenillas A, Lufrano F, Menéndez JA (2012) High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte. J Power Sources 214:137–141. doi:10.1016/j.jpowsour.2012.04.056

    Article  Google Scholar 

  40. Zhao L, Qiu Y, Yu J, Deng X, Dai C, Bai X (2013) Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale 5:4902–4909. doi:10.1039/c3nr33927k

    Article  Google Scholar 

  41. Fic K, Frackowiak E, Béguin F (2012) Unusual energy enhancement in carbon-based electrochemical capacitors. J Mater Chem 22:24213–24223. doi:10.1039/c2jm35711a

    Article  Google Scholar 

  42. Lekitima JN, Ozoemena KI, Jafta CJ, Kobayashi N, Song Y, Tong D et al (2013) High-performance aqueous asymmetric electrochemical capacitors based on graphene oxide/cobalt(ii)-tetrapyrazinoporphyrazine hybrids. J Mater Chem A 1:2821. doi:10.1039/c2ta01325h

    Article  Google Scholar 

  43. Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Jänes A et al (2004) Influence of the solvent properties on the characteristics of a double layer capacitor. J Power Sources 133:320–328. doi:10.1016/j.jpowsour.2004.03.026

    Article  Google Scholar 

  44. Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718. doi:10.1016/j.jpowsour.2005.05.055

    Article  Google Scholar 

  45. Wang RQ (2011) Studies and characterisations of activated carbons used for carbon/carbon supercapacitors. J Power Sources 5:866–868

    Google Scholar 

  46. Jiang D, Wu J (2014) Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode. Nanoscale 6:5545–5550. doi:10.1039/c4nr00046c

    Article  Google Scholar 

  47. Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567. doi:10.1016/j.jpowsour.2007.08.070

    Article  Google Scholar 

  48. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80. doi:10.1039/b110838g

    Article  Google Scholar 

  49. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M et al (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927. doi:10.1016/j.jpowsour.2006.12.048

    Article  Google Scholar 

  50. Oxford Dictionaries (2010) Alternative energy

    Google Scholar 

  51. Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Ionic liquids for hybrid supercapacitors. Electrochem Commun 6:566–570. doi:10.1016/j.elecom.2004.04.005

    Article  Google Scholar 

  52. Arbizzani C, Biso M, Cericola D, Lazzari M, Soavi F, Mastragostino M (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579. doi:10.1016/j.jpowsour.2008.09.016

    Article  Google Scholar 

  53. Weingarth D, Noh H, Foelske-Schmitz A, Wokaun A, Kötz R (2013) A reliable determination method of stability limits for electrochemical double layer capacitors. Electrochim Acta 103:119–124. doi:10.1016/j.electacta.2013.04.057

    Article  Google Scholar 

  54. Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater 2013:1–7

    Google Scholar 

  55. Xiao W, Xia H, Fuh JYH, Lu L (2009) Growth of single-crystal ??-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J Power Sources 193:935–938. doi:10.1016/j.jpowsour.2009.03.073

    Article  Google Scholar 

  56. Zhang Y, Sun C, Lu P, Li K, Song S, Xue D (2012) Crystallization design of MnO2 towards better supercapacitance. CrystEngComm 14:5892. doi:10.1039/c2ce25610j

    Article  Google Scholar 

  57. Wang HY, Xiao FX, Yu L, Liu B, Lou XW (2014) Hierarchical α-MnO2 nanowires@Ni1-xMn xOy nanoflakes core-shell nanostructures for supercapacitors. Small 10:3181–3186. doi:10.1002/smll.201303836

    Article  Google Scholar 

  58. Yin B, Zhang S, Yang J, Yang L, Fengyu Q, Xiang W (2014) Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm 16:9999–10005. doi:10.1039/C4CE01302F

    Article  Google Scholar 

  59. Wu J, Huang H, Yu L, Hu J (2013) Controllable hydrothermal synthesis of MnO2 nanostructures. Adv Mater Phys Chem 3:201–205

    Article  Google Scholar 

  60. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of Î ± −MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  Google Scholar 

  61. Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC et al (2014) Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Appl Mater Interfaces 6:8886–8893. doi:10.1021/am501650q

    Article  Google Scholar 

  62. Nam HS, Kwon JS, Kim KM, Ko JM, Kim JD (2010) Supercapacitive properties of a nanowire-structured MnO2 electrode in the gel electrolyte containing silica. Electrochim Acta 55:7443–7446. doi:10.1016/j.electacta.2010.02.027

    Article  Google Scholar 

  63. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309. doi:10.1021/jp811407q

    Article  Google Scholar 

  64. Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2009) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem 113:54–60. doi:10.1021/jp806454r

    Google Scholar 

  65. Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S (2005) Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sources 140:211–215. doi:10.1016/j.jpowsour.2004.07.033

    Article  Google Scholar 

  66. Wang X, Yuan A, Wang Y (2007) Supercapacitive behaviors and their temperature dependence of sol–gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. J Power Sources 172:1007–1011. doi:10.1016/j.jpowsour.2007.07.066

    Article  Google Scholar 

  67. Bello A, Fashedemi OO, Fabiane M, Lekitima JN, Ozoemena KI, Manyala N (2013) Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochim Acta 114:48–53. doi:10.1016/j.electacta.2013.09.134

    Article  Google Scholar 

  68. Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L et al (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431. doi:10.1016/j.jpowsour.2011.10.003

    Article  Google Scholar 

  69. Meher SK, Rao GR (2012) Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. J Power Sources 215:317–328. doi:10.1016/j.jpowsour.2012.04.104

    Article  Google Scholar 

  70. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Lokhande CD (2010) A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl Surf Sci 256:4411–4416. doi:10.1016/j.apsusc.2009.12.057

    Article  Google Scholar 

  71. Dubal DP, Holze R (2012) Successive ionic layer adsorption and reaction (SILAR) method to induce Mn3O4 nanospots on CNTs for supercapacitor. New J Chem 37(2):403–408. doi:10.1039/c2nj40862g

    Article  Google Scholar 

  72. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Fulari VJ, Lokhande CD (2009) A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J Alloys Compd 484:218–221. doi:10.1016/j.jallcom.2009.03.135

    Article  Google Scholar 

  73. Yang F, Zhao M, Sun Q, Qiao Y (2015) A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability. RSC Adv 5:9843–9847. doi:10.1039/C4RA10175H

    Article  Google Scholar 

  74. Lee JW, Hall AS, Kim JD, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164

    Article  Google Scholar 

  75. Gao W, Ye S, Shao M (2011) Solution-combusting preparation of mono-dispersed Mn3O4 nanoparticles for electrochemical applications. J Phys Chem Solids 72:1027–1031. doi:10.1016/j.jpcs.2011.05.015

    Article  Google Scholar 

  76. Xu HY, Le Xu S, Li XD, Wang H, Yan H (2006) Chemical bath deposition of hausmannite Mn3O4 thin films. Appl Surf Sci 252:4091–4096. doi:10.1016/j.apsusc.2005.06.011

    Article  Google Scholar 

  77. Dubal DP, Dhawale DS, Salunkhe RR, Fulari VJ, Lokhande CD (2010) Chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. J Alloys Compd 497:166–170. doi:10.1016/j.jallcom.2010.02.182

    Article  Google Scholar 

  78. Baykal A, Kavas H, Durmuş Z, Demir M, Kazan S, Topkaya R et al (2010) Sonochemical synthesis and chracterization of Mn3O4 nanoparticles. Cent Eur J Chem 8:633–638. doi:10.2478/s11532-010-0037-8

    Google Scholar 

  79. Sankar KV, Senthilkumar ST, Berchmans LJ, Sanjeeviraja C, Selvan RK (2012) Effect of reaction time on the synthesis and electrochemical properties of Mn3O4 nanoparticles by microwave assisted reflux method. Appl Surf Sci 259:624–630. doi:10.1016/j.apsusc.2012.07.087

    Article  Google Scholar 

  80. Liu C-L, Chang K-H, Hu C-C, Wen W-C (2012) Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. J Power Sources 217:184–192. doi:10.1016/j.jpowsour.2012.05.109

    Article  Google Scholar 

  81. Zhou T, Mo S, Zhou S, Zou W, Liu Y, Yuan D (2011) Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors. J Mater Sci 46:3337–3342. doi:10.1007/s10853-010-5221-x

    Article  Google Scholar 

  82. Apte SK, Naik SD, Sonawane RS, Kale BB, Pavaskar N, Mandale AB et al (2006) Nanosize Mn3O4 (Hausmannite) by microwave irradiation method. Mater Res Bull 41:647–654. doi:10.1016/j.materresbull.2005.08.028

    Article  Google Scholar 

  83. Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X et al (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5:9508–9516. doi:10.1021/am402257y

    Article  Google Scholar 

  84. Wang D, Li Y, Wang Q, Wang T (2012) Facile synthesis of porous Mn3O4 nanocrystal-graphene nanocomposites for electrochemical supercapacitors. Eur J Inorg Chem 2012:628–635. doi:10.1002/ejic.201100983

    Article  Google Scholar 

  85. Wells AF (1984) Structural inorganic chemistry, 5th edn. Oxford Science Publications, New York

    Google Scholar 

  86. Greenwood N (1997) Chemistry of the elements, 2nd edn. Butterworth–Heinemann, Oxford

    Google Scholar 

  87. Nathan T, Cloke M, Prabaharan SRS (2008) Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. J Nanomater 2008:1–8. doi:10.1155/2008/948183

    Article  Google Scholar 

  88. Chen X, Li X, Jiang Y, Shi C, Li X (2005) Rational synthesis of MnO2 and Mn2O3 nanowires with the electrochemical characterization of MnO2 nanowires for supercapacitor. Solid State Commun 136:94–96. doi:10.1016/j.ssc.2005.06.033

    Article  Google Scholar 

  89. Li W, Shao J, Liu Q, Liu X, Zhou X, Hu J (2015) Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim Acta 157:108–114. doi:10.1016/j.electacta.2015.01.056

    Article  Google Scholar 

  90. Chiang NK, Clokec M, Chena GZ, Engineering E, Capacitor E, Oxide M et al (2006) Nano-sized Mn2O3 preparedby a novel solvolysis route as an electrochemical capacitor. Inst Eng Malaysia 69:31–36

    Google Scholar 

  91. Chen Z, Zhang S, TAn S, Li F, Wang J, Jin S et al (1997) Preparation and electron spin resonance effect of nanometer-sized Mn2O3. J Cryst Growth 180:280–283. doi:10.1016/S0022-0248(97)00215-7

    Article  Google Scholar 

  92. He W, Zhang Y, Zhang X, Wang H, Yan H (2003) Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J Cryst Growth 252:285–288. doi:10.1016/S0022-0248(03)00937-0

    Article  Google Scholar 

  93. Hu C, Tsou T (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4:105–109

    Article  Google Scholar 

  94. Toupin M, Toupin M, Brousse T, Brousse T, Bélanger D, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952. doi:10.1021/cm020408q

    Article  Google Scholar 

  95. Rajendra Prasad K, Miura N (2004) Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun 6:1004–1008. doi:10.1016/j.elecom.2004.07.017

    Article  Google Scholar 

  96. Khomenko V, Raymundo-Piñero E, Béguin F (2006) Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 v in aqueous medium. J Power Sources 153:183–190. doi:10.1016/j.jpowsour.2005.03.210

    Article  Google Scholar 

  97. Sharma RK, Oh H-S, Shul Y-G, Kim H (2007) Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J Power Sources 173:1024–1028. doi:10.1016/j.jpowsour.2007.08.076

    Article  Google Scholar 

  98. Subramanian V, Zhu H, Wei B (2006) Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem Commun 8:827–832. doi:10.1016/j.elecom.2006.02.027

    Article  Google Scholar 

  99. Ma S-B, Nam K-W, Yoon W-S, Yang X-Q, Ahn K-Y, Oh K-H et al (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178:483–489. doi:10.1016/j.jpowsour.2007.12.027

    Article  Google Scholar 

  100. Xia H, Wang Y, Lin J, Lu L (2012) Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett 7:33. doi:10.1186/1556-276X-7-33

    Article  Google Scholar 

  101. Yang XH, Wang YG, Xiong HM, Xia YY (2007) Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochim Acta 53:752–757. doi:10.1016/j.electacta.2007.07.043

    Article  Google Scholar 

  102. Malak A, Fic K, Lota G, Vix-Guterl C, Frackowiak E (2010) Hybrid materials for supercapacitor application. J Solid State Electrochem 14:811–816. doi:10.1007/s10008-009-0856-8

    Article  Google Scholar 

  103. Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim Acta 53:7690–7695. doi:10.1016/j.electacta.2008.04.028

    Article  Google Scholar 

  104. Wang X, Myers BD, Yan J, Shekhawat G, Dravid V, Lee PS (2013) Manganese oxide micro-supercapacitors with ultra-high areal capacitance. Nanoscale 5:4119–4122. doi:10.1039/c3nr00210a

    Article  Google Scholar 

  105. Makgopa K, Ejikeme PM, Jafta CJ, Raju K, Zeiger M, Presser V et al (2015) A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J Mater Chem A 3:3480–3490. doi:10.1039/C4TA06715K

    Article  Google Scholar 

  106. Raymundo-Piñero E, Khomenko V, Frackowiak E, Béguin F (2005) Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152:A229. doi:10.1149/1.1834913

    Article  Google Scholar 

  107. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52:7377–7385. doi:10.1016/j.electacta.2007.06.023

    Article  Google Scholar 

  108. Wang H-Q, Yang G, Li Q-Y, Zhong X-X, Wang F-P, Li Z-S et al (2011) Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J Chem 35:469. doi:10.1039/c0nj00712a

    Article  Google Scholar 

  109. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H et al (2011) Symmetrical MnO2 carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5:8904–8913. doi:10.1021/nn203085

    Article  Google Scholar 

  110. Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y et al (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6:5404–5412. doi:10.1021/nn3012916

    Article  Google Scholar 

  111. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2:381–389. doi:10.1002/aenm.201100609

    Article  Google Scholar 

  112. Zhang X, Sun X, Zhang H, Zhang D, Ma Y (2012) Development of redox deposition of birnessite-type MnO2 on activated carbon as high-performance electrode for hybrid supercapacitors. Mater Chem Phys 137:290–296. doi:10.1016/j.matchemphys.2012.09.023

    Article  Google Scholar 

  113. Bello A, Fashedemi OO, Lekitima JN, Fabiane M, Dodoo-Arhin D, Ozoemena KI et al (2013) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:0–9. doi:10.1063/1.4819270

    Article  Google Scholar 

  114. Li Q, Lu X-F, Xu H, Tong Y-X, Li G-R (2014) Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Appl Mater Interfaces 6:2726–2733. doi:10.1021/am405271q

    Article  Google Scholar 

  115. Azhagan MVK, Vaishampayan MV, Shelke MV (2014) Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites. J Mater Chem A 2:2152. doi:10.1039/c3ta14076h

    Article  Google Scholar 

  116. Maiti S, Pramanik A, Mahanty S (2014) Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl Mater Interfaces 6:10754–10762. doi:10.1021/am502638d

    Article  Google Scholar 

  117. Li Z, Liu Z, Li D, Wang H (2015) Facile synthesis of a -MnO2 nanowires/spherical activated carbon composite for supercapacitor application in aqueous neutral electrolyte. J Mater Sci 26:353–359. doi:10.1007/s10854-014-2407-z

    Google Scholar 

  118. Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2V manganese oxide/activated carbon hybrid capacitor. Electrochem Solid-State Lett 5:A227. doi:10.1149/1.1506463

    Article  Google Scholar 

  119. Brousse T, Toupin M, Bélanger D (2004) A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J Electrochem Soc 151:A614. doi:10.1149/1.1650835

    Article  Google Scholar 

  120. Khomenko V, Raymundo-Piñero E, Frackowiak E, Béguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A Mater Sci Process 82:567–573. doi:10.1007/s00339-005-3397-8

    Article  Google Scholar 

  121. Brousse T, Taberna PL, Crosnier O, Dugas R, Guillemet P, Scudeller Y et al (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173:633–641. doi:10.1016/j.jpowsour.2007.04.074

    Article  Google Scholar 

  122. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y et al (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027. doi:10.1021/jp8113094

    Article  Google Scholar 

  123. Xu C, Du H, Li B, Kang F, Zeng Y (2009) Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J Electrochem Soc 156:A435. doi:10.1149/1.3106112

    Article  Google Scholar 

  124. Qu QT, Shi Y, Tian S, Chen YH, Wu YP, Holze R (2009) A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J Power Sources 194:1222–1225. doi:10.1016/j.jpowsour.2009.06.068

    Article  Google Scholar 

  125. Qu Q, Li L, Tian S, Guo W, Wu Y, Holze R (2010) A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO20.6H2O. J Power Sources 195:2789–2794. doi:10.1016/j.jpowsour.2009.10.108

    Article  Google Scholar 

  126. Demarconnay L, Raymundo-Piñero E, Béguin F (2011) Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J Power Sources 196:580–586. doi:10.1016/j.jpowsour.2010.06.013

    Article  Google Scholar 

  127. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T et al (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375. doi:10.1002/adfm.201100058

    Article  Google Scholar 

  128. Xia H, Huo C (2011) Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. Int J Smart Nano Mater 2:1–9. doi:10.1080/19475411.2011.623728

    Article  Google Scholar 

  129. Gao H, Xiao F, Ching CB, Duan H (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810. doi:10.1021/am300455d

    Article  Google Scholar 

  130. Lei Z, Zhang J, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153. doi:10.1039/c1jm13872c

    Article  Google Scholar 

  131. Jiang H, Li C, Sun T, Ma J (2012) A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4:807. doi:10.1039/c1nr11542a

    Article  Google Scholar 

  132. Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020–4028. doi:10.1021/nn3003345

    Article  Google Scholar 

  133. Jafta CJ, Nkosi F, le Roux L, Kebede M, Makgopa K, Mathea MK et al (2013) Tuning electrolytic manganese dioxide for a high-voltage aqueous asymmetric electrochemical capacitor. Electrochem Soc Trans 50:93–101

    Google Scholar 

  134. Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon N Y 61:190–199. doi:10.1016/j.carbon.2013.04.084

    Article  Google Scholar 

  135. Jin Y, Chen H, Chen M, Liu N, Li Q (2013) Graphene patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 5:3408–3416. doi:10.1021/am400457x

    Google Scholar 

  136. Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H et al (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083. doi:10.1002/adfm201301851

    Article  Google Scholar 

  137. Shao Y, Wang H, Zhang Q, Li Y (2013) High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J Mater Chem C 1:1245. doi:10.1039/c2tc00235c

    Article  Google Scholar 

  138. Cao J, Wang Y, Zhou Y, Ouyang JH, Jia D, Guo L (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206. doi:10.1016/j.jelechem.2012.10.024

    Article  Google Scholar 

  139. Yang C, Zhou M, Xu Q (2013) Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Phys Chem Chem Phys 15:19730–19740. doi:10.1039/c3cp53504e

    Article  Google Scholar 

  140. Liu M, Tjiu WW, Pan J, Zhang C, Gao W, Liu T (2014) One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale 6:4233–4242. doi:10.1039/c3nr06650a

    Article  Google Scholar 

  141. Wu S, Chen W, Yan L (2014) Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. J Mater Chem A 2:2765. doi:10.1039/c3ta14387b

    Article  Google Scholar 

  142. Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W et al (2014) High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 11:1310–1319. doi:10.1002/smll.201401922

    Article  Google Scholar 

  143. Zhang YX, Kuang M, Hao XD, Liu Y, Huang M, Guo XL et al (2014) Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors. J Power Sources 270:675–683. doi:10.1016/j.jpowsour.2014.07.114

    Article  Google Scholar 

  144. Ma W, Nan H, Gu Z, Geng B, Zhang X (2015) Superior performance asymmetric supercapacitors based on ZnCo2O4 @MnO2 core–shell electrode. J Mater Chem A 3:5442–5448. doi:10.1039/C5TA00012B

    Article  Google Scholar 

  145. Jiang J, Kucernak A (2002) Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim Acta 47:2381–2386. doi:10.1016/S0013-4686(02)00031-2

    Article  Google Scholar 

  146. Chang J, Tsai W (2004) Effects of temperature and concentration on the structure and effects of temperature and concentration on the structure and specific capacitanceof manganese oxide deposited in manganese acetate solution. J Appl Electrochem 34:953–961

    Article  Google Scholar 

  147. Taguchi A, Inoue S, Akamaru S, Hara M, Watanabe K, Abe T (2006) Phase transition and electrochemical capacitance of mechanically treated manganese oxides. J Alloys Compd 414:137–141. doi:10.1016/j.jallcom.2005.02.108

    Article  Google Scholar 

  148. Wu Y-T, Hu C-C (2005) Aspect ratio controlled growth of MnOOH in mixtures of Mn3O4 and MnOOH single crystals for supercapacitors. Electrochem Solid-State Lett 8:A240–A244

    Article  Google Scholar 

  149. Djurfors B, Broughton JN, Brett MJ, Ivey DG (2005) Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor. Acta Mater 53:957–965. doi:10.1016/j.actamat.2004.10.041

    Article  Google Scholar 

  150. Nagarajan N, Humadi H, Zhitomirsky I (2006) Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim Acta 51:3039–3045. doi:10.1016/j.electacta.2005.08.042

    Article  Google Scholar 

  151. An G, Yu P, Xiao M, Liu Z, Miao Z, Ding K et al (2008) Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19:275709. doi:10.1088/0957-4484/19/27/275709

    Article  Google Scholar 

  152. Wang B, Park J, Wang C, Ahn H, Wang G (2010) Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim Acta 55:6812–6817. doi:10.1016/j.electacta.2010.05.086

    Article  Google Scholar 

  153. Jiang H, Zhao T, Yan C, Ma J, Li C (2010) Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2:2195–2198. doi:10.1039/c0nr00257g

    Article  Google Scholar 

  154. Dubal DP, Holze R (2013) All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51:407–412. doi:10.1016/j.energy.2012.11.021

    Article  Google Scholar 

  155. Qiao Y, Sun Q, Cui H, Wang D, Yanga F, Wang X (2015) Synthesis of micro/nano-structured Mn3O4 for supercapacitor electrode with excellent rate performance. RSC Adv 5(40):31942–31946. doi:10.1039/C4RA04783D

    Article  Google Scholar 

  156. Yu C, Zhang L, Shi J, Zhao J, Gao J, Yan D (2008) A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. Adv Funct Mater 18:1544–1554. doi:10.1002/adfm.200701052

    Article  Google Scholar 

  157. Zhang LL, Wei T, Wang W, Zhao XS (2009) Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater 123:260–267. doi:10.1016/j.micromeso.2009.04.008

    Article  Google Scholar 

  158. Wang X, Liu L, Wang X, Yi L, Hu C, Zhang X (2011) Mn2O3/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors. Mater Sci Eng B Solid-State Mater Adv Technol 176:1232–1238. doi:10.1016/j.mseb.2011.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katlego Makgopa or Kenneth I. Ozoemena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Makgopa, K., Ejikeme, P.M., Ozoemena, K.I. (2016). Nanostructured Manganese Oxides in Supercapacitors. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics