Skip to main content

Development of Advanced Nanoarchitectures for Photocatalytic Treatment of NO x

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2730 Accesses

Abstract

As an important component of polluted air, NO x not only pollutes the atmospheric environment, but also causes harm to the health of humans directly or indirectly. Thus, different routes, such as selective catalytic reduction, selective non-catalytic reduction, and photocatalytic technologies have been explored for removing NO x . Among them, the photocatalytic route obtained lots of attentions due to its preferred advantages, including simple operation, low cost, high efficiency, and strong durability. In this chapter, we briefly introduce the generation mechanism, properties, and the hazards of NO x , comparing the different techniques for NO x degradation. We mainly focus on the photocatalytic NO x removal by reviewing the latest development of advanced nanoarchitectures for oxidation of NO x via designing and fabricating novel photocatalytic semiconductor nanomaterials, of which TiO2-based photocatalysts, bismuth-based photocatalysts and their modifications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobio C 9(1):1–12

    Article  CAS  Google Scholar 

  2. Busca G, Berardinelli S, Resini C et al (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160(2–3):265–288

    Article  CAS  Google Scholar 

  3. Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36(17):3872–3878

    Article  CAS  Google Scholar 

  4. Dalton JS, Janes PA, Jones NG et al (2002) Photocatalytic oxidation of NO x gases using TiO2: a surface spectroscopic approach. Environ Pollut 120(2):415–422

    Article  CAS  Google Scholar 

  5. Lasek J, Yu Y-H, Wu JCS (2013) Removal of NO x by photocatalytic processes. J Photochem Photobio C 14:29–52

    Article  CAS  Google Scholar 

  6. Hoek G, Krishnan RM, Beelen R et al (2013) Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health 12(1):43

    Article  CAS  Google Scholar 

  7. Wang S, Hao J (2012) Air quality management in China: issues, challenges, and options. J Environ Sci 24(1):2–13

    Article  CAS  Google Scholar 

  8. Yang QW, Li PF, Ren BN et al (2013) Study on the mechanism of SCR NO by Mn-Ce/CNTs catalyst at low-temperature. Adv Mater Res 773:645–648

    Article  CAS  Google Scholar 

  9. Schmieg SJ, Oh SH, Kim CH et al (2012) Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NO x reduction. Catal Today 184(1):252–261

    Article  CAS  Google Scholar 

  10. Colombo M, Nova I, Tronconi E (2012) Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment. Catal Today 197(1):243–255

    Article  CAS  Google Scholar 

  11. Møller J, Munk B, Crillesen K et al (2011) Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator. Waste Manage (Oxford) 31(6):1184–1193

    Article  CAS  Google Scholar 

  12. Fan W, Zhu T, Sun Y et al (2014) Effects of gas compositions on NO x reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere. Chemosphere 113:182–187

    Article  CAS  Google Scholar 

  13. Farcy B, Abou-Taouk A, Vervisch L et al (2014) Two approaches of chemistry downsizing for simulating selective non catalytic reduction DeNO x process. Fuel 118:291–299

    Article  CAS  Google Scholar 

  14. S-l F, Song Q, Tang J-S et al (2014) Effect of CaO on the selective non-catalytic reduction deNO x process: experimental and kinetic study. Chem Eng J 249:252–259

    Article  CAS  Google Scholar 

  15. Sano T, Tsutsui S, Koike K et al (2013) Activation of graphitic carbon nitride (gC3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J Mater Chem A 1(21):6489–6496

    Article  CAS  Google Scholar 

  16. Bianchi CL, Pirola C, Selli E et al (2012) Photocatalytic NO x abatement: the role of the material supporting the TiO2 active layer. J Hazard Mater 211:203–207

    Article  CAS  Google Scholar 

  17. Mitsionis A, Vaimakis T, Trapalis C et al (2011) Hydroxyapatite/titanium dioxide nanocomposites for controlled photocatalytic NO oxidation. Appl Catal B 106(3):398–404

    Article  CAS  Google Scholar 

  18. Zhu W, Liu P, Xiao S et al (2015) Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl Cata B 172:46–51

    Article  CAS  Google Scholar 

  19. Yu YH, Pan YT, Wu YT et al (2011) Photocatalytic NO reduction with C3H8 using a monolith photoreactor. Catal Today 174(1):141–147

    Google Scholar 

  20. Price C, Rind D (1994) Possible implications of global climate change on global lightning distributions and frequencies. J Geophy Res 99(D5):10823–10831, 1984–2012

    Article  Google Scholar 

  21. Delmas R, Serça D, Jambert C (1997) Global inventory of NO x sources. Nutr cycl agroecosys 48(1–2):51–60

    Article  CAS  Google Scholar 

  22. Benkovitz CM, Scholtz MT, Pacyna J et al (1996) Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J Geophy Res 101(D22):29239–29253, 1984–2012

    Article  CAS  Google Scholar 

  23. Olivier J, Bouwman A, Van der Hoek K et al (1998) Global air emission inventories for anthropogenic sources of NO x , NH3 and N2O in 1990. Environ Pollut 102(1):135–148

    Article  CAS  Google Scholar 

  24. Lamsal L, Martin R, Padmanabhan A et al (2011) Application of satellite observations for timely updates to global anthropogenic NO x emission inventories. Geophy Res Lett 38(5)

    Google Scholar 

  25. Sadanaga Y, Matsumoto J, Kajii Y (2003) Photochemical reactions in the urban air: recent understandings of radical chemistry. J Photochem Photobio C 4(1):85–104

    Article  CAS  Google Scholar 

  26. Chen B, Hong C, Kan H (2004) Exposures and health outcomes from outdoor air pollutants in China. Toxicology 198(1):291–300

    Article  CAS  Google Scholar 

  27. Normann F, Andersson K, Leckner B et al (2009) Emission control of nitrogen oxides in the oxy-fuel process. Prog Energ Combust Sci 35(5):385–397

    Article  CAS  Google Scholar 

  28. Fang HL, DaCosta HF (2003) Urea thermolysis and NO x reduction with and without SCR catalysts. Appl Cata B 46(1):17–34

    Article  CAS  Google Scholar 

  29. Kang M, Park ED, Kim JM et al (2007) Manganese oxide catalysts for NO x reduction with NH3 at low temperatures. Appl Catal A 327(2):261–269

    Article  CAS  Google Scholar 

  30. Wu Z, Jin R, Liu Y et al (2008) Ceria modified MNO x /TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun 9(13):2217–2220

    Article  CAS  Google Scholar 

  31. Grossale A, Nova I, Tronconi E et al (2008) The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. J Catal 256(2):312–322

    Article  CAS  Google Scholar 

  32. Roy S, Hegde MS, Madras G (2009) Catalysis for NO x abatement. Appl Energ 86(11):2283–2297

    Article  CAS  Google Scholar 

  33. Schneider H, Scharf U, Wokaun A et al (1994) Chromia on titania: IV. Nature of active sites for selective catalytic reduction of NO by NH3. J Catal 146(2):545–556

    Article  CAS  Google Scholar 

  34. Kwak JH, Tran D, Szanyi J et al (2012) The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13. Catal Lett 142(3):295–301

    Article  CAS  Google Scholar 

  35. Xue J, Wang X, Qi G et al (2013) Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NO x with ammonia: relationships between active Cu sites and de-NO x performance at low temperature. J Catal 297:56–64

    Article  CAS  Google Scholar 

  36. Hamill C, Burch R, Goguet A et al (2014) Evaluation and mechanistic investigation of a AuPd alloy catalyst for the hydrocarbon selective catalytic reduction (HC-SCR) of NO x . Appl Cata B 147:864–870

    Article  CAS  Google Scholar 

  37. Shen B, Ma H, Yao Y (2012) Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature. J Environ Sci 24(3):499–506

    Article  CAS  Google Scholar 

  38. Lu Z, Jiang L, Dai Q et al (2012) Low temperature selective catalytic reduction of NO in flue gas by V2O5/ACF. Environ Sci Technol 10:12

    Google Scholar 

  39. Li P, Liu Z, Li Q et al (2014) Multiple roles of SO2 in selective catalytic reduction of NO by NH3 over V2O5/AC catalyst. Ind Eng Chem Res 53(19):7910–7916

    Article  CAS  Google Scholar 

  40. Chen L, Li J, Ge M (2009) Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NO x by NH3. J Phys Chem C 113(50):21177–21184

    Article  CAS  Google Scholar 

  41. Kwak JH, Tonkyn RG, Kim DH et al (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3. J Catal 275(2):187–190

    Article  CAS  Google Scholar 

  42. Liu F, He H, Ding Y et al (2009) Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl Cata B 93(1–2):194–204

    Article  CAS  Google Scholar 

  43. Devadas M, Kröcher O, Elsener M et al (2006) Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5. Appl Cata B 67(3–4):187–196

    Article  CAS  Google Scholar 

  44. Sjövall H, Olsson L, Fridell E et al (2006) Selective catalytic reduction of NO x with NH3 over Cu-ZSM-5 – the effect of changing the gas composition. Appl Cata B 64(3–4):180–188

    Article  CAS  Google Scholar 

  45. Tayyeb Javed M, Irfan N, Gibbs BM (2007) Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J Environ Manag 83(3):251–289

    Article  CAS  Google Scholar 

  46. Mahmoudi S, Baeyens J, Seville JPK (2010) NO x formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenerg 34(9):1393–1409

    Article  CAS  Google Scholar 

  47. Lee GW, Shon BH, Yoo JG et al (2008) The influence of mixing between NH3 and NO for a De-NO x reaction in the SNCR process. J Ind Eng Chem 14(4):457–467

    Google Scholar 

  48. Cant NW, Cole JR (1992) Photocatalysis of the reaction between ammonia and nitric oxide on TiO2 surfaces. J Catal 134(1):317–330

    Article  CAS  Google Scholar 

  49. Sano T, Negishi N, Mas D et al (2000) Photocatalytic decomposition of N2O on highly dispersed Ag+ ions on TiO2 prepared by photodeposition. J Catal 194(1):71–79

    Article  CAS  Google Scholar 

  50. Hu Y, Martra G, Zhang J et al (2006) Characterization of the local structures of Ti-MCM-41 and their photocatalytic reactivity for the decomposition of NO into N2 and O2. J Phys Chem B 110(4):1680–1685

    Article  CAS  Google Scholar 

  51. Anpo M, Zhang SG, Mishima H et al (1997) Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catal Today 39(3):159–168

    Article  CAS  Google Scholar 

  52. Wu Q, van de Krol R (2012) Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant. J Am Chem Soc 134(22):9369–9375

    Article  CAS  Google Scholar 

  53. Huang KC, Chien SH (2013) Improved visible-light-driven photocatalytic activity of rutile/titania-nanotube composites prepared by microwave-assisted hydrothermal process. Appl Cata B 140–141:283–288

    Google Scholar 

  54. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  55. Dambournet D, Belharouak I, Amine K (2009) Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem Mater 22(3):1173–1179

    Article  CAS  Google Scholar 

  56. Zhang J, Ayusawa T, Minagawa M et al (2001) Investigations of TiO2 photocatalysts for the decomposition of NO in the flow system: the role of pretreatment and reaction conditions in the photocatalytic efficiency. J Catal 198(1):1–8

    Article  CAS  Google Scholar 

  57. Ohko Y, Nakamura Y, Negishi N et al (2009) Photocatalytic oxidation of nitrogen monoxide using TiO2 thin films under continuous UV light illumination. J Photochem Photobio A 205(1):28–33

    Article  CAS  Google Scholar 

  58. Matsuda S, Hatano H, Tsutsumi A (2001) Ultrafine particle fluidization and its application to photocatalytic NO x treatment. Chem Eng J 82(1–3):183–188

    Article  CAS  Google Scholar 

  59. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641

    Article  CAS  Google Scholar 

  60. Wu B, Guo C, Zheng N et al (2008) Nonaqueous production of nanostructured anatase with high-energy facets. J Am Chem Soc 130(51):17563–17567

    Article  CAS  Google Scholar 

  61. Yang HG, Liu G, Qiao SZ et al (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131(11):4078–4083

    Article  CAS  Google Scholar 

  62. Yu J, Xiang Q, Ran J et al (2010) One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 12(3):872–879

    Article  CAS  Google Scholar 

  63. Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J Am Chem Soc 132(34):11914–11916

    Article  CAS  Google Scholar 

  64. Xi G, Ye J (2010) Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem Commun 46(11):1893–1895

    Article  CAS  Google Scholar 

  65. Hengerer R, Kavan L, Krtil P et al (2000) Orientation dependence of charge-transfer processes on TiO2 (anatase) single crystals. J Electrochem Soc 147(4):1467–1472

    Article  CAS  Google Scholar 

  66. Kamei M, Mitsuhashi T (2000) Hydrophobic drawings on hydrophilic surfaces of single crystalline titanium dioxide: surface wettability control by mechanochemical treatment. Surf Sci 463(1):L609–L612

    Article  CAS  Google Scholar 

  67. Vittadini A, Selloni A, Rotzinger F et al (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81(14):2954

    Article  CAS  Google Scholar 

  68. Yang W, Li J, Wang Y et al (2011) A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90%{001} facets for dye-sensitized solar cells. Chem Commun 47(6):1809–1811

    Article  CAS  Google Scholar 

  69. Liu G, Sun C, Yang HG et al (2010) Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun 46(5):755–757

    Article  CAS  Google Scholar 

  70. Selloni A (2008) Crystal growth: anatase shows its reactive side. Nat Mater 7(8):613–615

    Article  CAS  Google Scholar 

  71. Zhao W, Tian FH, Wang X et al (2014) Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study. J Colloid Interface Sci 430:18–23

    Article  CAS  Google Scholar 

  72. Sofianou MV, Trapalis C, Psycharis V et al (2012) Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation. Environ Sci Pollut Res 19(9):3719–3726

    Google Scholar 

  73. Zhang D, Li G, Wang H et al (2010) Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst Growth Des 10(3):1130–1137

    Article  CAS  Google Scholar 

  74. Zhang D, Li G, Yang X et al (2009) A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem Commun 29:4381–4383

    Article  CAS  Google Scholar 

  75. Wen M, Liu P, Xiao S et al (2015) Uniform anatase single-crystal cubes with high thermal stability fully enclosed by active {010} and {001} facets. RSC Adv 5(15):11029–11035

    Article  CAS  Google Scholar 

  76. Zhang D, Li G, Wang F et al (2010) Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm 12(6):1759–1763

    Article  CAS  Google Scholar 

  77. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  78. Chen X, Shen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  Google Scholar 

  79. Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327–6359

    Article  CAS  Google Scholar 

  80. Chen D, Huang F, Cheng YB et al (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high‐performance dye‐sensitized solar cells. Adv Mater 21(21):2206–2210

    Article  CAS  Google Scholar 

  81. Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Cata B 90(3):595–602

    Article  CAS  Google Scholar 

  82. Yang Y, Wang H, Li X et al (2009) Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett 63(2):331–333

    Article  CAS  Google Scholar 

  83. Tian B, Li C, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151(1):220–227

    Article  CAS  Google Scholar 

  84. Tian BZ, Li CZ, Gu F et al (2009) Visible-light photocatalytic activity of Cr-doped TiO2 nanoparticles synthesized by flame spray pyrolysis. J Inorg Mater 24:661–665

    Google Scholar 

  85. Lorret O, Francová D, Waldner G et al (2009) W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl Cata B 91(1):39–46

    Article  CAS  Google Scholar 

  86. Li J, Xu J, Dai WL et al (2009) Direct hydro-alcohol thermal synthesis of special core–shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Appl Catal B 85(3):162–170

    Google Scholar 

  87. Lee H, Shin M, Lee M et al (2015) Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Appl Catal B 165:20–26

    Article  CAS  Google Scholar 

  88. Wang W, Ye Y, Feng J et al (2015) Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew Chem Int Ed 54(4):1321–1326

    Article  CAS  Google Scholar 

  89. Ishibai Y, Sato J, Akita S et al (2007) Photocatalytic oxidation of NO x by Pt-modified TiO2 under visible light irradiation. J Photochem Photobio A 188(1):106–111

    Article  CAS  Google Scholar 

  90. Huang C-H, Wang IK, Lin Y-M et al (2010) Visible light photocatalytic degradation of nitric oxides on PtOx-modified TiO2 via sol–gel and impregnation method. J Mol Catal A Chem 316(1–2):163–170

    Article  CAS  Google Scholar 

  91. Hashimoto K, Sumida K, Kitano S et al (2009) Photo-oxidation of nitrogen oxide over titanium(IV) oxide modified with platinum or rhodium chlorides under irradiation of visible light or UV light. Catal Today 144(1–2):37–41

    Article  CAS  Google Scholar 

  92. Wu Z, Sheng Z, Wang H et al (2009) Relationship between Pd oxidation states on TiO2 and the photocatalytic oxidation behaviors of nitric oxide. Chemosphere 77(2):264–268

    Article  CAS  Google Scholar 

  93. Sheng Z, Wu Z, Liu Y et al (2008) Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catal Commun 9(9):1941–1944

    Article  CAS  Google Scholar 

  94. Fang C, Jia H, Chang S et al (2014) (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energ Environ Sci 7(10):3431–3438

    Article  CAS  Google Scholar 

  95. Wu L, Li F, Xu Y et al (2015) Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl Catal B 164:217–224

    Article  CAS  Google Scholar 

  96. Seh ZW, Liu S, Low M et al (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24(17):2310–2314

    Article  CAS  Google Scholar 

  97. Zhang D, Wen M, Zhang S et al (2014) Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Appl Catal B 147:610–616

    Article  CAS  Google Scholar 

  98. Ileperuma OA, Tennakone K, Dissanayake WDDP (1990) Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems. Appl Catal 62(1):L1–L5

    Article  CAS  Google Scholar 

  99. Liu B, Chen HM, Liu C et al (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135(27):9995–9998

    Article  CAS  Google Scholar 

  100. Sofianou M-V, Tassi M, Boukos N et al (2014) Solvothermal synthesis and photocatalytic performance of Mg2+-doped anatase nanocrystals with exposed {001} facets. Catal Today 230:125–130

    Article  CAS  Google Scholar 

  101. Sofianou MV, Tassi M, Psycharis V et al (2015) Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed {001} facets. Appl Catal B 162:27–33

    Google Scholar 

  102. Xu J, Ao Y, Chen M (2009) Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light. Mater Lett 63(28):2442–2444

    Article  CAS  Google Scholar 

  103. Park Y, Kim W, Park H et al (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B 91(1):355–361

    Article  CAS  Google Scholar 

  104. Tafen DN, Wang J, Wu N et al (2009) Visible light photocatalytic activity in nitrogen-doped TiO2 nanobelts. Appl Phys Lett 94(9):093101-093101-093103

    Google Scholar 

  105. Lv Y, Yu L, Huang H et al (2009) Preparation of F-doped titania nanoparticles with a highly thermally stable anatase phase by alcoholysis of TiCl4. Appl Surf Sci 255(23):9548–9552

    Article  CAS  Google Scholar 

  106. Xiang Q, Yu J, Wang W et al (2011) Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem Commun 47(24):6906–6908

    Article  CAS  Google Scholar 

  107. Zhang Q, Lima DQ, Lee I et al (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed 50(31):7088–7092

    Article  CAS  Google Scholar 

  108. Han C, Pelaez M, Likodimos V et al (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B 107(1–2):77–87

    Article  CAS  Google Scholar 

  109. Xiong Z, Zhao XS (2012) Nitrogen-doped titanate-anatase core–shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. J Am Chem Soc 134(13):5754–5757

    Article  CAS  Google Scholar 

  110. Wang DH, Jia L, Wu XL et al (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4(2):576–584

    Google Scholar 

  111. Feng N, Zheng A, Wang Q et al (2011) Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 115(6):2709–2719

    Article  CAS  Google Scholar 

  112. Varley JB, Janotti A, Van de Walle CG (2011) Mechanism of visible-light photocatalysis in nitrogen-doped TiO2. Adv Mater 23(20):2343–2347

    Article  CAS  Google Scholar 

  113. Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B 140–141:559–587

    Article  CAS  Google Scholar 

  114. Yang C, Wang Z, Lin T et al (2013) Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J Am Chem Soc 135(47):17831–17838

    Article  CAS  Google Scholar 

  115. Zhang YC, Yang M, Zhang G et al (2013) HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water. Appl Catal B 142–143:249–258

    Article  CAS  Google Scholar 

  116. Yin S, Aita Y, Komatsu M et al (2005) Synthesis of excellent visible-light responsive TiO2 – N photocatalyst by a homogeneous precipitation-solvothermal process. J Mater Chem 15(6):674–682

    Article  CAS  Google Scholar 

  117. Yin S, Liu B, Zhang P et al (2008) Photocatalytic oxidation of NO x under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading. J Phys Chem C 112(32):12425–12431

    Article  CAS  Google Scholar 

  118. Huang Y, Ho W, Lee S et al (2008) Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x . Langmuir 24(7):3510–3516

    Article  CAS  Google Scholar 

  119. Yao-Hsuan T, Chien-Sheng K, Chia-Hung H et al (2006) Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity. Nanotechnology 17(10):2490

    Article  CAS  Google Scholar 

  120. Ding X, Song X, Li P et al (2011) Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres. J Hazard Mater 190(1–3):604–612

    Article  CAS  Google Scholar 

  121. Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42(13):4902–4907

    Article  CAS  Google Scholar 

  122. Pan JH, Zhang X, Du AJ et al (2008) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130(34):11256–11257

    Article  CAS  Google Scholar 

  123. Zhang KL, Liu CM, Huang FQ et al (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B 68(3–4):125–129

    Google Scholar 

  124. Lin X, Huang T, Huang F et al (2006) Photocatalytic activity of a bi-based oxychloride Bi3O4Cl. J Phys Chem B 110(48):24629–24634

    Article  CAS  Google Scholar 

  125. Cheng H, Huang B, Yang K et al (2010) Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity. ChemPhysChem 11(10):2167–2173

    Article  CAS  Google Scholar 

  126. Zhang W, Zhang Q, Dong F (2013) Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates prepared at room temperature. Ind Eng Chem Res 52(20):6740–6746

    Article  CAS  Google Scholar 

  127. Ai Z, Ho W, Lee S et al (2009) Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ Sci Technol 43(11):4143–4150

    Article  CAS  Google Scholar 

  128. Ai Z, Ho W, Lee S (2011) Efficient visible light photocatalytic removal of NO with BiOBr-Graphene nanocomposites. J Phys Chem C 115(51):25330–25337

    Article  CAS  Google Scholar 

  129. Dong F, Sun Y, Fu M et al (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219–220:26–34

    Article  CAS  Google Scholar 

  130. Li G, Jiang B, Xiao S et al (2014) An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation. Environ Sci Processes Impacts 16(8):1975–1980

    Article  CAS  Google Scholar 

  131. Fu H, Pan C, Yao W et al (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109(47):22432–22439

    Article  CAS  Google Scholar 

  132. Zhang C, Zhu Y (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17(13):3537–3545

    Article  CAS  Google Scholar 

  133. Zhang L, Wang W, Zhou L et al (2007) Bi2WO6 nano‐and microstructures: shape control and associated visible‐light‐driven photocatalytic activities. Small 3(9):1618–1625

    Article  CAS  Google Scholar 

  134. Li Y, Liu J, Huang X et al (2007) Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crys Growth Des 7(7):1350–1355

    Article  CAS  Google Scholar 

  135. Wu J, Duan F, Zheng Y et al (2007) Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C 111(34):12866–12871

    Article  CAS  Google Scholar 

  136. Huang Y, Ai Z, Ho W et al (2010) Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO. J Phys Chem C 114(14):6342–6349

    Article  CAS  Google Scholar 

  137. Li G, Zhang D, Yu JC et al (2010) An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide. Environ Sci Technol 44(11):4276–4281

    Article  CAS  Google Scholar 

  138. Zhou Y, Zhang X, Zhang Q et al (2014) Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. J Mater Chem A 2(39):16623–16631

    Article  CAS  Google Scholar 

  139. Li G, Zhang D, Yu JC (2008) Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst. Chem Mater 20(12):3983–3992

    Article  CAS  Google Scholar 

  140. Ai Z, Lee S (2013) Morphology-dependent photocatalytic removal of NO by hierarchical BiVO4 microboats and microspheres under visible light. Appl Surf Sci 280:354–359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 21477079, 21207090, 21237003, 21261140333), PCSIRT (IRT1269), Shanghai Government (14JC1402500, 11SG42, 15QA1403300h), the Doctoral Program of Higher Education (20123127120009), and Shanghai Normal University (DXL122 and S30406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xiao, S., Zhang, D., Li, G., Li, H. (2016). Development of Advanced Nanoarchitectures for Photocatalytic Treatment of NO x . In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_5

Download citation

Publish with us

Policies and ethics