Skip to main content

Development of Visible Light Responsive Morphology Controlled TiO2 Photocatalyst

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

It has been reported that well-crystallized faceted particles showed enhanced photocatalytic activity compared to normal spherical shaped particles with poor crystallinity. Therefore, great attention has long been paid to preparation of exposed crystal face-controlled TiO2 nanoparticles in order to develop a high active TiO2 photocatalyst. In this chapter, preparation of morphology-controlled rutile and brookite TiO2 nanorods with exposed crystal faces by hydrothermal technique is summarized. The obtained rutile and brookite TiO2 nanorods showed high levels of activity for degradation of organic compounds compared to the activity levels of anatase fine particles (ST-01), which is one of the most famous and high active commercially available photocatalysts developed for environmental cleanup. In addition, the detailed technology of crystal face selective modification of metal compounds technology to produce morphology-controlled, visible light responsive rutile and brookite TiO2 nanorods is discussed. The metal ion modified rutile and brookite TiO2 nanorod thus produced shows much higher activity than commercially available conventional visible light responsive N-doped TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Choi W (2006) Pure and modified TiO2 photocatalysts and their environmental applications. Catal Surv Asia 10:16–28

    Article  CAS  Google Scholar 

  3. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  4. Hosono E, Fujihara S, Kakiuchi K, Imai H (2004) Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J Am Chem Soc 126:7790–7791

    Article  CAS  Google Scholar 

  5. Neale NR, Frank AJ (2007) Size and shape control of nanocrystallites in mesoporous TiO2 films. J Mater Chem 17:3216–3221

    Article  CAS  Google Scholar 

  6. Huang X, Pan C (2007) Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J Cryst Growth 306:117–122

    Article  CAS  Google Scholar 

  7. Testino A, Bellobono IR, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F (2007) Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc 129:3564–3575

    Article  CAS  Google Scholar 

  8. Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26:1167–1170

    Article  CAS  Google Scholar 

  9. Bae E, Murakami N, Ohno T (2009) Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. J Mol Catal A Chem 300:72–79

    Article  CAS  Google Scholar 

  10. Bae E, Ohno T (2009) Exposed crystal surface-controlled rutile TiO2 nanorods prepared by hydrothermal treatment in the presence of poly(vinyl pyrrolidone). Appl Catal B Environ 91:634–639

    Article  CAS  Google Scholar 

  11. Bae E, Murakami N, Nakamura M, Ohno T (2010) Effect of chemical etching by sulfuric acid or H2O2–NH3 mixed solution on the photocatalytic activity of rutile TiO2 nanorods. Appl Catal A Gen 380:48–54

    Article  CAS  Google Scholar 

  12. Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C 113:3062–3069

    Article  CAS  Google Scholar 

  13. Ohno T, Higo T, Saito H, Yuan S, Jin Z, Yang Y, Tsubota T (2015) Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. J Mol Catal A Chem 396:261–267

    Article  CAS  Google Scholar 

  14. Sato S (1986) photocatalytic activity of nox-doped TiO2 in the visible-light region. Chem Phys Lett 123:126–128

    Article  CAS  Google Scholar 

  15. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  16. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456

    Article  CAS  Google Scholar 

  17. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121

    Article  CAS  Google Scholar 

  18. Ohno T, Tsubota T, Nishijima K, Miyamoto Z (2004) Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light. Chem Lett 33:750–751

    Article  CAS  Google Scholar 

  19. Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32:772–773

    Article  CAS  Google Scholar 

  20. Serpone N, Lawless D (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids – naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10:643–652

    Article  CAS  Google Scholar 

  21. Ikeda S, Sugiyama N, Pal B, Marci G, Palmisano L, Noguchi H, Uosakid K, Ohtani B (2001) Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: Correlation with electron-hole recombination kinetics. Phys Chem Chem Phys 3:267–273

    Article  CAS  Google Scholar 

  22. Kisch H, Zang L, Lange C, Maier WF, Antonius C, Meissner D (1998) Modified, amorphous titania – a hybrid semiconductor for detoxification and current generation by visible light. Angew Chem Int Ed 37:3034–3036

    Article  CAS  Google Scholar 

  23. Zang L, Lange C, Abraham I, Storck S, Maier WF, Kisch H (1998) J Phys Chem B 102:10765–10771

    Article  CAS  Google Scholar 

  24. Zang L, Lange C, Abraham I, Storck S, Maier WF, Kisch H (1998) Amorphous microporous titania modified with platinum(IV) chloride – a new type of hybrid photocatalyst for visible light detoxification. J Phys Chem B 102:10765–10771

    Article  CAS  Google Scholar 

  25. Macyk W, Kisch H (2001) Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes. Chem Eur J 7:1862–1867

    Article  CAS  Google Scholar 

  26. Murakami N, Chiyoya T, Tsubota T, Ohno T (2008) Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength. Appl Catal A Gen 348:148–152

    Article  CAS  Google Scholar 

  27. Murakami N, Ono A, Nakamura M, Tsubota T, Ohno T (2010) Development of a visible-light-responsive rutile rod by site-selective modification of iron(III) ion on {111} exposed crystal faces. Appl Catal A General 97:115–119

    Article  CAS  Google Scholar 

  28. Oliver PM, Watson GW, Kelsey ET, Parker SC (1997) Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J Mater Chem 7:563–568

    Article  CAS  Google Scholar 

  29. Murakami N, Mahaney OOP, Abe R, Torimoto T, Ohtani B (2007) Double-beam photoacoustic spectroscopic studies on transient absorption of titanium(IV) oxide photocatalyst powders. J Phys Chem C 111:11927–11935

    Article  CAS  Google Scholar 

  30. Ohno T, Haga D, Fujihara K, Kaizaki K, Matsumura M (1997) Unique effects of iron(III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide. J Phys Chem B 101:6415–6419

    Article  CAS  Google Scholar 

  31. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mat 22:2050–2060

    Article  CAS  Google Scholar 

  32. Kobayashi M, Tomita K, Petrykin V, Yin S, Sato T, Yoshimura M, Kakihana M (2007) Hydrothermal synthesis of nanosized titania photocatalysts using novel water-soluble titanium complexes. Solid State Phenomena 124–126:723–726

    Article  Google Scholar 

  33. Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487

    Article  CAS  Google Scholar 

  34. Kobayashi M, Petrykin V, Kakihana M, Tomita K (2009) Hydrothermal synthesis and photocatalytic activity of whisker-like rutile-type titanium dioxide. J Am Ceram Soc 92(S1):S21–S26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhisa Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ohno, T. (2016). Development of Visible Light Responsive Morphology Controlled TiO2 Photocatalyst. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_4

Download citation

Publish with us

Policies and ethics