Skip to main content

Z-Scheme Water Splitting into H2 and O2 Under Visible Light

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2778 Accesses

Abstract

The development of water-splitting systems that can harvest a wide range of visible light has been, for many years, a major challenge to realize efficient conversion of solar light to hydrogen. Recently a new type of photocatalysis system that can split water into H2 and O2 under visible light irradiation has been developed, by mimicking the two-step photoexcitation (Z-scheme) mechanism of natural photosynthesis in green plants. In this system, the water-splitting reaction is broken into two stages: one for H2 evolution and the other for O2 evolution; these are combined by using a shuttle redox couple (Red/Ox) in the solution. The introduction of a Z-scheme mechanism reduces the energy required to drive each photocatalysis process, extending the usable wavelengths significantly (∼660 nm for H2 evolution and ∼600 nm for O2 evolution) from that in conventional water-splitting systems (~460 nm) based on one-step photoexcitation in a single semiconductor material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electro photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  3. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C Photochem Rev 11:179–209

    Article  Google Scholar 

  4. Domen K, Naito S, Soma M, Onishi T, Tamaru K (1980) Photocatalytic decomposition of water vapor on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun 1980:543–554

    Article  Google Scholar 

  5. Kato K, Asakura K, Kudo A (2001) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089

    Article  Google Scholar 

  6. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem Commun 2001:2416–2417

    Article  Google Scholar 

  7. Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energ 25:41–54

    Article  CAS  Google Scholar 

  8. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287

    Article  CAS  Google Scholar 

  9. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(295)

    Google Scholar 

  10. Bard AJ (1979) Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem 10:59–75

    Article  CAS  Google Scholar 

  11. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase and rutile) and IO3 /I shuttle redox mediator. Chem Phys Lett 344:339–344

    Article  CAS  Google Scholar 

  12. Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 /I. J Phys Chem B 109:16052–16061

    Article  CAS  Google Scholar 

  13. Abe R, Higashi M, Domen K (2011) Overall water splitting under visible light through two-step photoexcitation between TaON and WO3 in the presence of an iodate/iodide shuttle redox mediator. ChemSusChem 4:228–237

    Article  CAS  Google Scholar 

  14. Abe R (2011) Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation. Bull Chem Soc Jpn 84:1000–1030, Award account

    Article  CAS  Google Scholar 

  15. Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photochem Photobiol A Chem 163:181–186

    Article  CAS  Google Scholar 

  16. Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) (Oxy)nitrides as new photocatalysts for water splitting under visible light irradiation. Electrochemistry 70:463–465

    CAS  Google Scholar 

  17. Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 107:1798–1803

    Article  CAS  Google Scholar 

  18. Abe R, Takata T, Sugihara H, Domen K (2005) Photocatalytic overall water splitting under visible light irradiation by TaON and WO3 with an IO3 /I shuttle redox mediator. Chem Commun 2005:3829–3831

    Article  Google Scholar 

  19. Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca, Sr, Ba) and WO3 with IO3 /I shuttle redox mediator. Chem Phys Lett 452:120–123

    Article  CAS  Google Scholar 

  20. Higashi M, Abe R, Takata T, Domen K (2009) Photocatalytic overall water splitting under visible light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3 /I shuttle redox mediated system. Chem Mater 21:1543–1549

    Article  CAS  Google Scholar 

  21. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitaion by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868

    Article  CAS  Google Scholar 

  22. Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K (2008) Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ < 500 nm). Chem Lett 37:138–139

    Article  CAS  Google Scholar 

  23. Maeda K, Abe R, Domen K (2011) Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light. J Phys Chem C 115:3057–3064

    Article  CAS  Google Scholar 

  24. Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K (2010) Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 26:9161–9165

    Article  CAS  Google Scholar 

  25. Abe R, Higashi M, Domen K (2010) Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J Am Chem Soc 132:11828–11829

    Article  CAS  Google Scholar 

  26. Higashi M, Domen K, Abe R (2012) Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J Am Chem Soc 134:6968–6971

    Article  CAS  Google Scholar 

  27. Higashi M, Domen K, Abe R (2013) Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. J Am Chem Soc 135:10238–10241

    Article  CAS  Google Scholar 

  28. Abe R, Shinmei K, Hara K, Ohtani B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 2009:3577–3579

    Article  Google Scholar 

  29. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of triiodide/iodide shuttle redox mediator. J Am Chem Soc 135:16872–16884

    Article  CAS  Google Scholar 

  30. Katoh R, Furube A, Mori S, Miyashita M, Sunahara K, Koumura N, Hara K (2009) Highly stable semsitizer dyes for dye-sensitized solar cells: role of the oligothiophene moiety. Energ Environ Sci 2:542–546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryu Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abe, R. (2016). Z-Scheme Water Splitting into H2 and O2 Under Visible Light. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_25

Download citation

Publish with us

Policies and ethics