Skip to main content

Nanostructured Elemental Photocatalysts: Development and Challenges

  • Chapter
  • First Online:
Book cover Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Elemental semiconductors and semimetals have emerged as a new class of photocatalysts. Like traditional photocatalysts, their development is greatly promoted by the advancement of nanoscience. This chapter describes the recent progress of nanostructured elemental photocatalysts, including their prevailing synthetic strategies and their applications. Five semiconductor elements (silicon, selenium, phosphorus, sulfur, and boron) are introduced, followed by a brief review of a semimetal (bismuth). The prospects and opportunities in this emerging field are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  3. Chen XB, Shen SH, Guo LJ et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  4. Yu S, Yun HJ, Kim YH et al (2014) Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B Environ 144:893–899

    Article  CAS  Google Scholar 

  5. Jia L, Wang D, Huang Y et al (2011) Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J Phys Chem C 115:11466–11473

    Article  CAS  Google Scholar 

  6. Su ZX, Wang L, Grigorescu S et al (2014) Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Chem Comm 50:15561–15564

    Article  CAS  Google Scholar 

  7. Hisatomi T, Katayama C, Moriya Y et al (2013) Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energ Environ Sci 12:3595–3599

    Article  Google Scholar 

  8. Liu G, Niu P, Cheng HM (2013) Visible-light-active elemental photocatalysts. ChemPhysChem 14:885–892

    Article  CAS  Google Scholar 

  9. Kang ZH, Tsang CHA, Wong NB et al (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J Am Chem Soc 129:12090–12091

    Article  CAS  Google Scholar 

  10. Shao MW, Cheng L, Zhang XH et al (2009) Excellent photocatalysis of HF-treated silicon nanowires. J Am Chem Soc 131:17738–17739

    Article  CAS  Google Scholar 

  11. Su JY, Yu HT, Quan X et al (2013) Hierarchically porous silicon with significantly improved photocatalytic oxidation capability for phenol degradation. Appl Catal B Environ 138–139:427–433

    Article  Google Scholar 

  12. Dai F, Zai JT, Yi R et al (2014) Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Comm 5:3605

    Google Scholar 

  13. Nath S, Ghosh SK, Panigahi S et al (2004) Synthesis of selenium nanoparticle and its photocatalytic application for decolorization of methylene blue under UV irradiation. Langmuir 20:7880–7883

    Article  CAS  Google Scholar 

  14. Chiou YD, Hsu YJ (2011) Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl Catal B Environ 105:211–219

    Article  CAS  Google Scholar 

  15. Wang F, Ng WKH, Yu JC et al (2012) Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl Catal B Environ 111–112:409–414

    Article  Google Scholar 

  16. Wang F, Li CH, Li YC et al (2012) Hierarchical P/YPO4 microsphere for photocatalytic hydrogen production from water under visible light irradiation. Appl Catal B Environ 119–120:267–272

    Article  Google Scholar 

  17. Shen ZR, Sun ST, Wang WJ et al (2015) A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J Mater Chem A 3:3285–3289

    Article  CAS  Google Scholar 

  18. Shen ZR, Hu ZF, Wang WJ et al (2014) Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale 6:14163–14167

    Article  CAS  Google Scholar 

  19. Liu G, Niu P, Yin LC et al (2012) Alpha-sulfur crystals as a visible-light-active photocatalyst. J Am Chem Soc 134:9070–9073

    Article  CAS  Google Scholar 

  20. Hu CY, Zheng SZ, Lian CJ et al (2014) One-step synthesis of a sulfur–graphene composite with enhanced photocatalytic performance. Appl Surf Sci 314:266–272

    Article  CAS  Google Scholar 

  21. Wang WJ, Yu JC, Xia DH et al (2013) Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47:8724–8732

    CAS  Google Scholar 

  22. Meng SG, Cao ZS, Fu XL et al (2015) Fabrication of hydrophilic S/In2O3 core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation. Appl Surf Sci 315:188–197

    Article  Google Scholar 

  23. Zhuo SF, Huang Y, Liu CB et al (2014) Sulfur copolymer nanowires with enhanced visible-light photoresponse. Chem Comm 50:11208–11210

    Article  CAS  Google Scholar 

  24. Li SX, Chen DJ, Zheng FY et al (2014) Water-soluble and lowly toxic sulphur quantum dots. Adv Funct Mater 24:7133–7138

    Article  CAS  Google Scholar 

  25. Liu G, Yin LG, Niu P et al (2013) Visible-light-responsive β-rhombohedral boron photocatalysts. Angew Chem Int Ed 52:6242–6245

    Article  CAS  Google Scholar 

  26. Qin F, Wang RM, Li GF et al (2013) Highly efficient photocatalytic reduction of Cr(VI) by bismuth hollow nanospheres. Catal Comm 42:14–19

    Article  CAS  Google Scholar 

  27. Zhang Q, Zhou Y, Wang F et al (2014) From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air. J Mater Chem A 2:11065–11072

    Article  CAS  Google Scholar 

  28. Dong F, Xiong T, Sun YJ et al (2014) A semimetal bismuth element as a direct plasmonic photocatalyst. Chem Comm 50:10386–10389

    Article  CAS  Google Scholar 

  29. Jiao ZB, Zhang Y, Ouyang SX et al (2014) BiAg alloy nanospheres: a new photocatalyst for H2 evolution from water splitting. ACS Appl Mater Interfaces 6:19488–19493

    Article  CAS  Google Scholar 

  30. Bookbinder DC, Lewis NS, Bradley MG et al (1979) Photoelectrochemical reduction of N,N′-dimethyl-4,4′-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen. J Am Chem Soc 1979(101):7721–7723

    Article  Google Scholar 

  31. Golovanova GF, Petrov AS, Silaev EA (1982) Photocatalytic decomposition of CCl4 on a silicon surface. Kinet Catal 23:1084–1087

    Google Scholar 

  32. Taniguchi Y, Yoneyama H, Tamura H (1983) Hydrogen evolution on surface-modified silicon powder photocatalysis in aqueous ethanol solutions. Chem Lett 3:269–272

    Article  Google Scholar 

  33. Wang YL, Wang TY, Da PM et al (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25:5177–5195

    Article  CAS  Google Scholar 

  34. Chen YW, Prange JD, Duhnen S et al (2011) Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat Mater 10:539–544

    Article  CAS  Google Scholar 

  35. Jun K, Lee YS, Buonassisi T et al (2012) High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation. Angew Chem Int Ed 51:423–427

    Article  CAS  Google Scholar 

  36. Peng KQ, Wang X, Li L et al (2013) Silicon nanowires for advanced energy conversion and storage. Nano Today 8:75–97

    Article  CAS  Google Scholar 

  37. Levine A, Yuan GB, Xie J et al (2010) Preparations and energetic applications of Si nanowires. Sci Adv Mater 2:463–473

    Article  CAS  Google Scholar 

  38. Chen ZH, Tang YB, Liu Y et al (2009) Dye degradation induced by hydrogen-terminated silicon nanowires under ultrasonic agitations. J Appl Phys 105:034307

    Article  Google Scholar 

  39. Verplanck N, Galopin E, Camart JC et al (2007) Reversible electrowetting on superhydrophobic silicon nanowires. Nano Lett 7:813–817

    Article  CAS  Google Scholar 

  40. Benkhedir ML (2006) Defect levels in the amorphous selenium bandgap (PhD thesis), Katholieke Universiteit Leuven

    Google Scholar 

  41. Bhatnagar AK, Venugopal Reddy K, Srivastava V (1985) Optical-energy gap of amorphous selenium-effect of annealing. J Phys D 18:L149–L153

    Article  CAS  Google Scholar 

  42. Roth WL, Dewitt TW, Smith AJ (1947) Polymorphism of red phosphorus. J Am Chem Soc 69:2881–2885

    Article  CAS  Google Scholar 

  43. Young JA (2004) Red phosphorus. J Chem Educ 81:945

    Article  CAS  Google Scholar 

  44. Ruck M, Hoppe D, Wahl B et al (2005) Fibrous red phosphorus. Angew Chem Int Ed 44:7616–7619

    Article  CAS  Google Scholar 

  45. Winchester RAL, Whitby M, Shaffer MSP (2009) Synthesis of pure phosphorus nanostructures. Angew Chem Int Ed 48:3616–3621

    Article  CAS  Google Scholar 

  46. Steudel R, Eckert B (2003) Solid sulfur allotropes. Top Curr Chem 230:1–79

    Article  CAS  Google Scholar 

  47. Eremets MI, Struzhkin VV, Mao HK et al (2001) Superconductivity in boron. Science 293:272–274

    Article  CAS  Google Scholar 

  48. Oganov AR, Chen JH, Gatti C et al (2009) Ionic high-pressure form of elemental boron. Nature 457:863–867

    Article  CAS  Google Scholar 

  49. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO(2) single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  CAS  Google Scholar 

  50. Liu G, Yu JC, Lu GQ et al (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Comm 47:6763–6783

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy C. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shen, Z., Yu, J.C. (2016). Nanostructured Elemental Photocatalysts: Development and Challenges. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_17

Download citation

Publish with us

Policies and ethics