Skip to main content

Photocatalytic Properties of TiO2-Loaded Porous Silica with Hierarchical Macroporous and Mesoporous Architectures

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, application of porous siliceous materials as platforms for design of TiO2-based photocatalysts is reviewed. Porous siliceous materials with one or both types of pores, i.e., ordered mesopores and hierarchical macropores, were synthesized by applying template strategies. Based on the advantageous porous structure, TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures exhibited specific characteristics (e.g., an easy transportation of relatively large molecules and unique adsorption properties to condense organic compounds), and enhanced photocatalytic properties in the degradation of organic compounds in water under UV light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  2. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  5. Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2010) Design of new functional Titanium oxide-based photocatalysts for degradation of organics diluted in water and air. Curr Org Chem 14:616–629

    Article  CAS  Google Scholar 

  6. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  7. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Google Scholar 

  8. Kamegawa T, Suzuki N, Yamashita H (2011) Design of macroporous TiO2 thin film photocatalysts with enhanced photofunctional properties. Energy Environ Sci 4:1411–1416

    Article  CAS  Google Scholar 

  9. Kamegawa T, Shimizu Y, Yamashita H (2012) Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Adv Mater 24:3697–3700

    Article  CAS  Google Scholar 

  10. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  11. Yamashita H, Harada M, Misaka M, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196

    Article  CAS  Google Scholar 

  12. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  13. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911

    Article  CAS  Google Scholar 

  14. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121

    Article  CAS  Google Scholar 

  15. Fuku K, Kamegawa T, Mori K, Yamashita H (2012) Highly dispersed platinum nanoparticles on TiO2 prepared by using the microwave-assisted deposition method: an efficient photocatalyst for the formation of H2 and N2 from aqueous NH3. Chem Asian J 7:1366–1371

    Article  CAS  Google Scholar 

  16. Kamegawa T, Matsuura S, Seto H, Yamashita H (2013) A visible-light-harvesting assembly with a sulfocalixarene linker between dyes and a Pt-TiO2 photocatalyst. Angew Chem Int Ed 52:916–919

    Article  CAS  Google Scholar 

  17. Kominami H, Yamamoto S, Imamura K, Tanaka A, Hashimoto K (2014) Photocatalytic chemoselective reduction of epoxides to alkenes along with formation of ketones in alcoholic suspensions of silver-loaded titanium(IV) oxide at room temperature without the use of reducing gases. Chem Commun 50:4558–4560

    Article  CAS  Google Scholar 

  18. Kamegawa T, Seto H, Matsuura S, Yamashita H (2012) Preparation of hydroxynaphthalene-modified TiO2 via formation of surface complexes and their applications in the photocatalytic reduction of nitrobenzene under visible-light irradiation. ACS Appl Mater Interfaces 4:6635–6639

    Article  CAS  Google Scholar 

  19. Lang X, Ma W, Chen C, Ji H, Zhao J (2014) Selective aerobic oxidation mediated by TiO2 photocatalysis. Acc Chem Res 47:355–363

    Article  CAS  Google Scholar 

  20. Palmisano G, García-López E, Marcì G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 46:7074–7089

    Article  CAS  Google Scholar 

  21. Wang J, Zhang J, Asoo BY, Stucky GD (2003) Structure-selective synthesis of mesostructured/mesoporous silica nanofibers. J Am Chem Soc 125:13966–13967

    Article  CAS  Google Scholar 

  22. Fowler CE, Khushalani D, Mann S (2001) Interfacial synthesis of hollow microspheres of mesostructured silica. Chem Commun 2028–2029

    Google Scholar 

  23. Okada S, Mori K, Kamegawa T, Che M, Yamashita H (2011) Active site design in a core-shell nanostructured catalyst for a one-pot oxidation reaction. Chem Euro J 17:9047–9051

    Article  CAS  Google Scholar 

  24. Kamegawa T, Yamahana D, Seto H, Yamashita H (2013) Preparation of single-site Ti-containing mesoporous silica with a nanotube architecture and its enhanced catalytic activities. J Mater Chem A 1:891–897

    Article  CAS  Google Scholar 

  25. Velev OD, Jede TA, Lobo RF, Lenhoff AM (1997) Porous silica via colloidal crystallization. Nature 389:447–448

    Article  CAS  Google Scholar 

  26. Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540

    Article  CAS  Google Scholar 

  27. Stein A, Schroden RC (2001) Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curr Opin Solid State Mater Sci 5:553–564

    Article  CAS  Google Scholar 

  28. Li F, Wang Z, Ergang NS, Fyfe CA, Stein A (2007) Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity. Langmuir 23:3996–4004

    Article  CAS  Google Scholar 

  29. Xue C, Wang J, Tu B, Zhao D (2010) Hierarchically porous silica with ordered mesostructure from confinement self-assembly in skeleton scaffolds. Chem Mater 22:494–503

    Article  CAS  Google Scholar 

  30. Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials - chemical applications of inverse opals. Chem Soc Rev 42:2763–2803

    Article  CAS  Google Scholar 

  31. Kamegawa T, Suzuki N, Che M, Yamashita H (2011) Synthesis and unique catalytic performance of single-site Ti-containing hierarchical macroporous silica with mesoporous frameworks. Langmuir 27:2873–2879

    Article  CAS  Google Scholar 

  32. Kamegawa T, Tanaka S, Seto H, Zhou D, Yamashita H (2013) Preparation of aluminum-containing mesoporous silica with hierarchical macroporous architecture and its enhanced catalytic activities. Phys Chem Chem Phys 15:13323–13328

    Article  CAS  Google Scholar 

  33. Kamegawa T, Ishiguro Y, Seto H, Yamashita H (2015) Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J Mater Chem A 3:2323–2330

    Article  CAS  Google Scholar 

  34. Kamegawa T, Ando T, Ishiguro Y, Yamashita H (2015) Hydroxylation of phenol on iron-containing mesoporous silica with hierarchical macroporous architecture. Bull Chem Soc Jpn 88:572–574

    Google Scholar 

  35. Inumaru K, Kasahara T, Yasui M, Yamanaka S (2005) Direct nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst. Chem Commun 2131–2133

    Google Scholar 

  36. Kuwahara Y, Maki K, Matsumura Y, Kamegawa T, Mori K, Yamashita H (2009) Hydrophobic modification of a mesoporous silica surface using a fluorine-containing silylation agent and its application as an advantageous host material for the TiO2 photocatalyst. J Phys Chem C 113:1552–1559

    Article  CAS  Google Scholar 

  37. Kamegawa T, Yamahana D, Yamashita H (2010) Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of activity photocatalytic. J Phys Chem C 114:15049–15053

    Article  CAS  Google Scholar 

  38. Kamegawa T, Kido R, Yamahana D, Yamashita H (2013) Design of TiO2-zeolite composites with enhanced photocatalytic performances under irradiation of UV and visible light. Micropor Mesopor Mater 165:142–147

    Article  CAS  Google Scholar 

  39. Qian XF, Kamegawa T, Mori K, Li HX, Yamashita H (2013) Calcium phosphate coatings incorporated in mesoporous TiO2/SBA-15 by a facile inner-pore sol-gel process toward enhanced adsorption-photocatalysis performances. J Phys Chem C 117:19544–19551

    Article  CAS  Google Scholar 

  40. Qian XF, Fuku K, Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2014) Design and functionalization of photocatalytic systems within mesoporous silica. ChemSusChem 7:1528–1536

    Article  CAS  Google Scholar 

  41. Zou D, Ma S, Guan R, Park M, Sun L, Aklonis JJ, Salovey R (1992) Model filled polymers. V Synthesis of crosslinked monodisperse polymethacrylate beads. J Polym Sci Part A Polym Chem 30:137–144

    Article  CAS  Google Scholar 

  42. Ogawa M (1996) A simple sol-gel route for the preparation of silica-surfactant mesostructured materials. Chem Commun 1149–1150

    Google Scholar 

  43. Berens AR (1997) Predicting the migration of endocrine disrupters from rigid plastics. Polym Eng Sci 37:391–395

    Article  CAS  Google Scholar 

  44. Ocampo-Pérez R, Leyva-Ramos R, Sanchez-Polo M, Rivera-Utrilla J (2013) Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption 19:945–957

    Article  Google Scholar 

  45. Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820

    Article  CAS  Google Scholar 

  46. Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Degradation of bisphenol A in water by TiO2 photocatalyst. Environ Sci Technol 35:2365–2368

    Article  CAS  Google Scholar 

  47. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  48. Egeblad K, Christensen CH, Kustova M (2008) Templating mesoporous zeolites. Chem Mater 20:946–960

    Article  CAS  Google Scholar 

  49. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kamegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamegawa, T., Yamashita, H. (2016). Photocatalytic Properties of TiO2-Loaded Porous Silica with Hierarchical Macroporous and Mesoporous Architectures. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_13

Download citation

Publish with us

Policies and ethics