Skip to main content

Photocatalytic Decomposition of NH3 Over Fe-Doped TiO2 Prepared by Solid-State Impregnation

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2663 Accesses

Abstract

Pt/Fe-TiO2 photocatalysts which deposited Pt on Fe-doped TiO2 catalyzed the photodecomposition of NH3 aqueous solution to H2 and N2 under UV irradiation at room temperature. In addition, it was indicated that hydrogen formation by the photodecomposition of NH3 aqueous solution was caused under even visible light irradiation to Pt/Fe-TiO2 photocatalyst. Electron spin resonance spectroscopy showed that the dopant Fe species substituted a portion of the Ti4+ sites in the TiO2 crystal without changing TiO2 structure. From UV–visible diffuse reflectance measurements of Fe-doped TiO2, it was also indicated that the absorption edge of TiO2 was shifted from the ultraviolet to the visible light region by substitution with Fe. Hence, Fe-TiO2 photocatalyst seemed to allow for the effective utilization of irradiation light owing to the presence of a Fe impurity band, thereby leading to its higher activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Kudo K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  3. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  4. Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999) Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B 103:2188–2194

    Article  CAS  Google Scholar 

  5. Rodriguez SM, Richter C, Galvez GB, Vincent M (1996) Photocatalytic degradation of industrial residual waters. Sol Energy 56:401–410

    Article  CAS  Google Scholar 

  6. Irmak S, Kusvuran E, Erbatur O (2004) Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl Catal B 54:85–91

    Article  CAS  Google Scholar 

  7. Azevedo EB, Neto FRA, Dezotti M (2004) Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl Catal B 54:165–173

    Article  CAS  Google Scholar 

  8. Baran W, Makowski A, Wardas W (2008) The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dyes Pigm 76:226–230

    Article  Google Scholar 

  9. Tang H, Prasad K, Sanjinés R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047

    Article  CAS  Google Scholar 

  10. Lindgren T, Mwabora JM, Avendaño E, Jonsson J, Hoel A, Granqvist CG (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B 107:5709–5716

    Article  CAS  Google Scholar 

  11. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  12. Anpo M, Ichihashi Y, Takeuchi M, Yamashita H (1998) Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res Chem Intermed 24:143–149

    Article  CAS  Google Scholar 

  13. Yamashita H, Ichihashi Y, Takeuchi M, Kishiguchi S, Anpo M (1999) Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J Synchrotron Radiat 6:451–452

    Article  CAS  Google Scholar 

  14. Khan MA, Woo SI, Yang OB (2008) Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int J Hydrog Energy 33:5345–5351

    Article  CAS  Google Scholar 

  15. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrog Energy 34:5337–5346

    Article  CAS  Google Scholar 

  16. Maeda K, Abe R, Domen K (2011) Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light. J Phys Chem C 115:3057–3064

    Article  CAS  Google Scholar 

  17. Dorian JP, Franssen HT, Simbeck DR (2006) Global challenges in energy. Energy Policy 34:1984–1991

    Article  Google Scholar 

  18. Mu Y, Zheng XJ, Yu HQ, Zhu RF (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrog Energy 31:780–785

    Article  CAS  Google Scholar 

  19. Sun T, Liu E, Fan J, Hu X, Wu F, Hou W, Yang Y, Kang L (2013) High photocatalytic activity of hydrogen production from water over Fe doped and Ag deposited anatase TiO2 catalyst synthesized by solvothermal method. Chem Eng J 228:896–906

    Article  CAS  Google Scholar 

  20. Momirlan M, Veziroglu TN (2002) Current status of hydrogen energy. Renew Sustain Energy Rev 6:141–179

    Article  CAS  Google Scholar 

  21. Li QS, Domen K, Naito S, Onishi T, Tamaru K (1983) Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catyalysts. Chem Lett 3:321–324

    Article  Google Scholar 

  22. Kaneko M, Gokan N, Katakura N, Takei Y, Hoshino M (2005) Artificial photochemical nitrogen cycle to produce nitrogen and hydrogen from ammonia by platinized TiO2 and its application to a photofuel cell. Chem Commun 2005:1625–1627

    Article  Google Scholar 

  23. Maffei N, Pelletier L, Charland JP, McFarlan A (2005) An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte. J Power Sources 140:264–267

    Article  CAS  Google Scholar 

  24. Pelletier L, McFarlan A, Maffei N (2005) Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes. J Power Sources 145:262–265

    Article  CAS  Google Scholar 

  25. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029

    Article  CAS  Google Scholar 

  26. Nemoto J, Gokan N, Ueno H, Kaneko M (2007) Photodecomposition of ammonia to dinitrogen and dihydrogen on platinized TiO2 nanoparticles in an aqueous solution. J Photochem Photobiol A 185:295–300

    Article  CAS  Google Scholar 

  27. Tang H, Berger H, Schmid PE, Levy F (1993) Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87:847–850

    Article  CAS  Google Scholar 

  28. Egerton TA, Harris E, Lawson EJ, Mile B, Rowlands CC (2001) An EPR study of diffusion of iron into rutile. Phys Chem Chem Phys 3:497

    Article  CAS  Google Scholar 

  29. Ranjit KT, Viswanathan B (1997) Synthesis, characterisation and photocatalytic properties of iron doped TiO2 catalysts. J Photochem Photobiol A 108:79–84

    Article  CAS  Google Scholar 

  30. Zhu J, Chen F, Zhang J, Chenb H, Anpo M (2006) Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A 180:196–204

    Article  CAS  Google Scholar 

  31. Maksinov NG, Mikhailova IL, Anufrenko VF (1973) The EPR spectra and the state of Fez+ ions in TiO2. Kinet Catal 13:1162

    Google Scholar 

  32. Yalcin Y, Kilic M, Cinar Z (2010) Fe3+-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl Catal B 99:469–477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Ichihashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ichihashi, Y., Okemoto, A., Obata, K., Taniya, K., Nishiyama, S. (2016). Photocatalytic Decomposition of NH3 Over Fe-Doped TiO2 Prepared by Solid-State Impregnation. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_11

Download citation

Publish with us

Policies and ethics