Skip to main content

Light–Matter Interaction

  • Chapter
  • First Online:
Photonics
  • 3659 Accesses

Abstract

The classical linear oscillator model provides useful qualitative insights into the interaction of light with matter. In particular, it yields essentially correct results about the complex character of the electric susceptibility and its resonant behavior, and the frequency dependence (dispersion) of the refractive index is explained in a simple and intuitive way. For a more quantitative determination of resonance frequencies and absorption, however, a quantum mechanical description of light–matter interaction is required. Since the optical response of matter is dominated by the electrons, the following discussion concentrates on the interaction of light with these particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subscripts i and f refer to initial and final; note that the energy E i of the initial state is not necessarily lower than E f .

  2. 2.

    See Table 1.1 for different units of \(\hslash \omega\).

  3. 3.

    A transition might still be possible because of higher order interactions such as quadrupole interactions, but the cross section is smaller by several orders of magnitude in this case.

  4. 4.

    For a derivation see, e.g., Svelto (2010).

References and Suggested Reading

  • Allen, L., & Eberly, J. H. (1987). Optical resonance and two-level atoms. New York: Dover.

    Google Scholar 

  • Bass, M., (Ed.). (2010). Handbook of optics. New York: McGraw-Hill.

    Google Scholar 

  • Burns, G. (1985). Solid state physics. Orlando: Academic Press.

    Google Scholar 

  • Capasso, F. (1990). Physics of quantum electron devices. New York: Springer.

    Book  Google Scholar 

  • Cerullo, G., Longhi, S., Nisoli, M., Stagira, S., Svelto, O. (2001) Problems in laser physics. New York: Springer.

    Book  Google Scholar 

  • Chow, W. W., & Koch, S. W. (1999). Semiconductor-laser fundamentals. New York: Springer.

    Book  MATH  Google Scholar 

  • Connelly, M. J. (2002). Semiconductor optical amplifiers. New York: Springer.

    Google Scholar 

  • Desurvire, E. (2001). Erbium doped fiber amplifiers. New York: Wiley.

    Book  Google Scholar 

  • Faist, J. (2011). Quantum cascade lasers. London: Oxford University Press.

    Google Scholar 

  • Fowler, W., & Dexter, D. L. (1962). Relation between absorption and emission probabilities in luminescent centers in ionic solids. Physical Review, 128(5), 2154.

    Article  ADS  Google Scholar 

  • Fowles, G. F. (1989). Introduction to modern optics. New York: Dover.

    Google Scholar 

  • Frantz, L. M., & Nodvik, J. S. (1963). Theory of pulse propagation in a laser amplifier. Journal of Applied Physics, 34(8), 2346–2349.

    Article  ADS  Google Scholar 

  • Ghafouri-Shiraz, H. (1995). Fundamentals of laser diode amplifiers. New York: Wiley.

    Google Scholar 

  • Graham-Smith, F. (2007). Optics and photonics. New York: Wiley.

    Google Scholar 

  • Herzberg, G. (2010). Atomic spectra and atomic structure. New York: Dover.

    Google Scholar 

  • Hodgson, J. N. (1970). Optical absorption and dispersion in solids. New York: Springer.

    Google Scholar 

  • Loudon, R. (2000). The quantum theory of light. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Miller, D. A. B. (2008). Quantum mechanics for scientists and engineers. New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Numai, T. (2004). Fundamentals of semiconductor lasers. Berlin: Springer.

    Google Scholar 

  • Omar, M. A. (1993). Elementary solid state physics. New York: Pearson Education.

    Google Scholar 

  • Paschotta, R. (2009). Encyclopedia of laser physics and technology. New York: John Wiley.

    Google Scholar 

  • Saleh, B. E., & Teich, M. C. (2007). Fundamentals of photonics. New York: Wiley.

    Google Scholar 

  • Siegman, A. E. (1986). Lasers. Mill Valley, CA: University Science Books.

    Google Scholar 

  • Svelto, O. (2010). Principles of lasers. New York: Plenum Press.

    Book  Google Scholar 

  • Wooten, F. (1972). Optical properties of solids. New York: Elsevier.

    Google Scholar 

  • Yariv, A. (1982). An introduction to theory and applications of quantum mechanics. New York: Dover.

    Google Scholar 

  • Yariv, A., & Yeh, P. (2006). Photonics. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reider, G.A. (2016). Light–Matter Interaction. In: Photonics. Springer, Cham. https://doi.org/10.1007/978-3-319-26076-1_6

Download citation

Publish with us

Policies and ethics