Skip to main content

Dielectric Waveguides

  • Chapter
  • First Online:
Photonics
  • 3525 Accesses

Abstract

Dielectric waveguides are key components of photonics; the success of optical communications relies to a great degree on the availability of glass fibers with extremely low losses. In contrast to (metallic) radio frequency waveguides that are bulky and lossy, photonic waveguides rely on total internal reflection in dielectrics, are very small in diameter and can transport optical fields over tens of kilometers before signal regeneration is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ω 4-dependence can be understood from an inspection of Eq. (2.1): the field scattered from an inhomogeneity scales with the second time derivative \(\partial ^{2}P/\partial t^{2}\! \propto \!\omega ^{2}\); the radiated power is therefore proportional to ω 4.

  2. 2.

    If the periodic longitudinal modulation is not cosinusoidal, it can be decomposed in a Fourier series, and the following analysis applies to a selected component of this expansion.

References and Suggested Reading

  • Abramowitz, M., & Stegun, I. A., (2014). Handbook of mathematical functions. New York: Martino Publishing.

    Google Scholar 

  • Agrawal, G. P. (2012). Nonlinear fiber optics. New York: Academic Press.

    Google Scholar 

  • Bass, M., & van Stryland, E.W. (2001). Fiber optics handbook. New York: McGraw-Hill.

    Google Scholar 

  • Bjarklev, A., Broeng, J., Bjarklev, A. S. (2003). Photonic crystal fibres. New York: Springer.

    Book  Google Scholar 

  • Bottacchi, S. (2014). Theory and design of terabit optical fiber transmission systems. New York: Cambridge University Press.

    Book  Google Scholar 

  • Desurvire, E. (2001). Erbium doped fiber amplifiers. New York: Wiley.

    Book  Google Scholar 

  • Gao, J. (2010). Optoelectronic integrated circuit design and device modeling. New York: Wiley.

    Book  Google Scholar 

  • Hasegawa, A. (2003). Optical solitons in fibers. New York: Springer.

    Book  Google Scholar 

  • Haus, H. A. (1984). Waves and fields in optoelectronics. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D. (2008). Photonic crystals. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Lifante, G. (2003). Integrated photonics. New York: John Wiley.

    Book  Google Scholar 

  • Marcuse, D. (1991). Theory of dielectric optical waveguides. New York: Academic Press.

    Google Scholar 

  • Mitschke, F. (2010). Fiber optics: Physics and technology. New York: Springer.

    Book  Google Scholar 

  • Nishihara, H., Haruna, M., Suhara, T. (1989). Optical integrated circuits. New York: McGraw-Hill.

    Google Scholar 

  • Pollock, C., & Lipson, M. (2003). Integrated photonics. New York: Springer.

    Book  Google Scholar 

  • Reed, G. T., & Knights, A. P. (2004). Silicon photonics. New York: John Wiley.

    Book  Google Scholar 

  • Russell, P. S. J. (2006). Photonic-crystal fibers. Journal of Lightwave Technology, 24(12), 4729–4749. http://jlt.osa.org/abstract.cfm?URI=jlt-24-12-4729

    Article  ADS  Google Scholar 

  • Sakoda, K. (2005). Optical properties of photonic crystals. New York: Springer.

    Google Scholar 

  • Saleh, B. E., & Teich, M. C. (2007). Fundamentals of photonics. New York: Wiley.

    Google Scholar 

  • Sibilia, C., & Benson, T. (2008). Photonic crystals. New York: Springer.

    Google Scholar 

  • Snyder, A. W. (2010). Optical waveguide theory. New York: Springer.

    Google Scholar 

  • Tamir, Th. (Ed.). (1995). Guided wave optoelectronics. New York: Springer.

    Google Scholar 

  • Venghaus, H. (2006). Wavelength filters in fibre optics. New York: Springer.

    Book  Google Scholar 

  • Wartak, M. S. (2012). Computational photonics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Yariv, A. (1973). Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 9(9), 919–933.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reider, G.A. (2016). Dielectric Waveguides. In: Photonics. Springer, Cham. https://doi.org/10.1007/978-3-319-26076-1_5

Download citation

Publish with us

Policies and ethics