Skip to main content

Mechanisms of Formation of Some Forms of Electrodeposited Pure Metals

  • Chapter
  • First Online:
Morphology of Electrochemically and Chemically Deposited Metals

Abstract

As already given in Chap. 1, the most frequently used form of the cathodic polarization curve equation for flat or large spherical electrode of massive metal is given by:

$$ i=\frac{i_0\left(\kern.2em {f}_{\mathrm{c}}-{f}_{\mathrm{a}}\right)}{1+\frac{i_0{f}_{\mathrm{c}}}{i_{\mathrm{L}}}} $$

where i, i 0, and i L are the current density, exchange current density, and limiting diffusion current density, respectively, and

$$ {f}_{\mathrm{c}}={10}^{\kern.1em \frac{\eta }{b_{\mathrm{c}}}}\ \mathrm{and}\ {f}_{\mathrm{a}}={10}^{-\frac{\eta }{b_{\mathrm{a}}}} $$

where b c and b a are the cathodic and anodic Tafel slopes and η is the overpotential. Equation (1.13) is modified for use in electrodeposition of metals by taking cathodic current density and overpotential as positive. Derivation of the Eq. (1.13) is performed under assumption that the concentration dependence of i 0 can be neglected [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reversible potential of a surface with radius of curvature r cur would depart from that of a planar surface by the quantity \( \Delta {E}_{\mathrm{r}}=2\gamma \kern0.1em V/\left( nF{r}_{\mathrm{cur}}\right) \), where γ is the interfacial energy between metal and solution and V molar volume of metal [5]. It is valid at extremely low r cur, being of the order of few millivolts, and it can be neglected except in some special cases, like the stability of the shape of the tips of dendrites [5].

References

  1. Popov KI, Živković PM, Nikolić ND (2010) The effect of morphology of activated electrodes on their electrochemical activity. In: Djokić SS (ed) Electrodeposition: theory and practice, vol 48, Series: modern aspects of electrochemistry. Springer, New York, pp 163–213

    Chapter  Google Scholar 

  2. Bockris JO’M, Reddy AKN, Gamboa–Aldeco M (2000) Modern electrochemistry 2A, fundamentals of electrodics, 2nd edn. Kluwer Academic/Plenum Publishers, New York, p 1248

    Google Scholar 

  3. Diggle JW, Despić AR, Bockris JO’M (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116:1503–1514

    Article  CAS  Google Scholar 

  4. Živković PM, Grgur BN, Popov KI (2008) The validity of the general polarization curve equation approximation for the metal deposition process. J Serb Chem Soc 73:227–231

    Article  CAS  Google Scholar 

  5. Barton JL, Bockris JO’M (1962) The electrolytic growth of dendrites from ionic solutions. Proc Roy Soc A268:485–505

    Article  Google Scholar 

  6. Popov KI, Živković PM, Grgur BN (2007) Physical and mathematical models of an inert macroelectrode modified with active hemispherical microelectrodes. Electrochim Acta 52:4696–4707

    Article  CAS  Google Scholar 

  7. Popov KI, Krstajić NV, Čekerevac MI (1996) The mechanism of formation of coarse and disperse electrodeposits. In: White RE, Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 30. Plenum Press, New York, pp 261–311

    Google Scholar 

  8. Popov KI, Nikolić ND (2012) General Theory of Disperse Metal Electrodeposits Formation. In: Djokić SS (ed) Electrochemical Production of Metal Powders. Series: Modern Aspects of Electrochemistry, vol 54. Springer, New York, pp 1–62

    Chapter  Google Scholar 

  9. Despić AR, Diggle JW, Bockris JO’M (1968) Mechanism of formation of zinc dendrites. J Electrochem Soc 115:507–508

    Article  Google Scholar 

  10. Gilleadi E (1993) Electrode kinetics. VCH Publishers Inc, New York, p 443

    Google Scholar 

  11. Despić AR, Popov KI (1972) Transport controlled deposition and dissolution of metals. In: Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 7. Plenum Press, New York, pp 199–313

    Google Scholar 

  12. Popov KI, Grgur BN, Pavlović MG, Radmilović V (1993) The morphology of copper electrodeposits: I. The mechanism of copper cauliflower-like electrodeposit formation. J Serb Chem Soc 58:1055–1062

    CAS  Google Scholar 

  13. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  14. Popov KI (1971) Deposition and dissolution of metals in diffusion control conditions. University of Belgrade, Dissertation (in Serbian)

    Google Scholar 

  15. Popov KI, Pavlović LjJ, Pavlović MG, Čekerevac MI (1988) Electrode surface coarsening in potentiostatic copper electrodeposition. Surf Coat Technol 35:39–45

    Article  CAS  Google Scholar 

  16. Popov KI, Pavlović MG, Pavlović LjJ, Čekerevac MI, Remović GŽ (1988) Electrode surface coarsening in pulsating overpotential copper electrodeposition. Surf Coat Technol 34:355–363

    Article  CAS  Google Scholar 

  17. Popov KI, Maksimović MD, Pavlović MG, Lukić DT (1980) The mechanism of copper powder formation in potentiostatic deposition. J Appl Electrochem 10:299–308

    Article  CAS  Google Scholar 

  18. Damjanović A (1965) On the mechanism of metal electrocrystallization. Plating 52:1017–1026

    Google Scholar 

  19. Popov KI, Radmilović V, Grgur BN, Pavlović MG (1994) The morphology of copper electrodeposits. III. The disperse deposits formation. J Serb Chem Soc 59:119–125

    CAS  Google Scholar 

  20. Popov KI, Radmilović V, Grgur BN, Pavlović MG (1994) The morphology of copper electrodeposits. II. The mechanism of carrot-like electrodeposit formations. J Serb Chem Soc 59:47–52

    CAS  Google Scholar 

  21. Pangarov NA (1964) On the crystal orientation of electrodeposited metals. Electrochim Acta 9:721–726

    Article  CAS  Google Scholar 

  22. Pangarov NA, Vitkova SD (1966) Preferred orientation of electrodeposited cobalt crystallites. Electrochim Acta 11:1733–1745

    Article  CAS  Google Scholar 

  23. Maksimović MD, Popov KI, Jović LjJ, Pavlović MG (1979) Mechanism of electrode surface roughening in galvanostatic metal deposition at natural convection. Bull Soc Chim 44:547–554

    Google Scholar 

  24. Maksimović MD, Popov KI, Pavlović MG (1979) Roughening in galvanostatic metal deposition on a rotating disc electrode. Bull Soc Chim 44:687–693

    Google Scholar 

  25. Popov KI, Maksimović MD (1989) Theory of the effect of electrodeposition at a periodically changing rate on the morphology of metal deposits. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 19. Plenum Press, New York, pp 193–250

    Chapter  Google Scholar 

  26. Wranglen G (1960) Dendrites and growth layers in the electrocrystallization of metals. Electrochim Acta 2:130–146

    Article  CAS  Google Scholar 

  27. Bechtoldt CJ, Ogburn F, Smith J (1968) Structure and morphology of electrodeposited molybdenum dendrites. J Electrochem Soc 115:813–816

    Article  CAS  Google Scholar 

  28. Faust JW, John HF (1963) Growth twins in F.C.C metals. J Electrochem Soc 110:463–464

    Article  Google Scholar 

  29. Faust JW, John HF (1961) Germanium dendritic studies. I. Studies of thin structures and the seeding mechanism. J Electrochem Soc 108:855–860

    Article  CAS  Google Scholar 

  30. Smith J, Ogburn F, Bechtoldt CJ (1968) Multiple twin structures in electrodeposited silver dendrites. J Electrochem Soc 115:371–374

    Article  Google Scholar 

  31. Justinijanović IN, Despić AR (1973) Some observation on the properties of zinc electrodeposited from alkaline zincate solutions. Electrochim Acta 18:709–712

    Article  Google Scholar 

  32. Bockris JO’M, Razumney GA (1967) Fundamental aspects of electrocrystallization. Plenum Press, New York

    Book  Google Scholar 

  33. Popov KI, Čekerevac MI (1989) Dendritic electrocrystallization of cadmium from acid sulphate solution II: the effect of the geometry of dendrite precursors on the shape of dendrites. Surf Coat Technol 37:435–440

    Article  CAS  Google Scholar 

  34. Nikolić ND, Popov KI, Ivanović ER, Branković G, Stevanović SI, Živković PM (2015) The potentiostatic current transients and the role of local diffusion fields in formation of the 2D lead dendrites from the concentrated electrolyte. J Electroanal Chem 739:137–148

    Article  CAS  Google Scholar 

  35. Nikolić ND, Popov KI (2014) A new approach to the understanding of the mechanism of lead electrodeposition. In: Djokić SS (ed) Electrodeposition and surface finishing, vol 57, Series: modern aspects of electrochemistry. Springer, New York, pp 85–132

    Chapter  Google Scholar 

  36. Nikolić ND, Popov KI, Ivanović ER, Branković G (2014) Effect of orientation of initially formed grains on the final morphology of electrodeposited lead. J Serb Chem Soc 79:993–1005

    Article  CAS  Google Scholar 

  37. Newman JS (1973) Electrochemical systems. Prentice-Hall Inc, Engelwood Cliffs, p 177

    Google Scholar 

  38. Popov KI, Maksimović MD, Trnjavčev JD, Pavlović MG (1981) Dendritic electrocrystallization and the mechanism of powder formation in the potentiostatic electrodeposition of metals. J Appl Electrochem 11:239–246

    Article  CAS  Google Scholar 

  39. Popov KI, Krstajić NV, Pantelić RM, Popov SR (1985) Dendritic electrocrystallisation of lead from lead nitrate solution. Surf Technol 26:177–183

    Article  CAS  Google Scholar 

  40. Popov KI, Pavlović MG, Jovićević JN (1989) Morphology of tin powder particles obtained in electrodeposition on copper cathode by constant and square – wave pulsating overpotential from Sn(II) alkaline solution. Hydrometallurgy 23:127–137

    Article  CAS  Google Scholar 

  41. Epstein IM (1966) Priblizhennaya formula polubeskonechnoi cilindricheskoi diffuzii. Elektrokhimiya 2:734–736 (in Russian)

    Google Scholar 

  42. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889

    Article  CAS  Google Scholar 

  43. Popov KI, Pavlović MG (1993) Electrodeposition of metal powders with controlled grain size and morphology. In: White RE, Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 24. Plenum Press, New York, pp 299–391

    Chapter  Google Scholar 

  44. Calusaru A (1979) Electrodeposition of metal powders. Material science monography, vol 3. Elsevier, Amsterdam

    Google Scholar 

  45. Ibl N (1962) The formation of powdered metal deposits. In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 2. Intersience, New York

    Google Scholar 

  46. Pangarov NA (1967) Twining processes in the electrocrystallization of face-centred cubic metals. Phys Stat Sol 20:371–377

    Article  CAS  Google Scholar 

  47. Gutzov I (1964) Kinetics of electrolytic phase-formation under galvanostatic conditions. Izv Inst Fiz Chim Bulgar Acad Nauk 4:69–88 (in Bulgarian)

    Google Scholar 

  48. Klapka V (1970) To the problem of crystallization overvoltage during electrocrystallization of metals. Coll Czechoslov Chem Comun 35:899–906

    Article  CAS  Google Scholar 

  49. Pangarov NA, Velinov V (1966) The orientation of silver nuclei on a platinum substrate. Electrochim Acta 11:1753–1758

    Article  CAS  Google Scholar 

  50. Pangarov NA, Vitkova SD, Uzunova I (1966) Electronographic investigation of the degree of preferred orientation of nickel electrodeposits. Electrochim Acta 11:1747–1751

    Article  CAS  Google Scholar 

  51. Markov I, Boynov A, Toshev S (1973) Screening action and growth kinetics of electrodeposited mercury droplets. Electrochim Acta 18:377–384

    Article  CAS  Google Scholar 

  52. Štrbac S, Rakočević Z, Popov KI, Pavlović MG, Petrović R (1999) The role of surface defects in HOPG on the electrochemical and physical deposition of Ag. J Serb Chem Soc 64:483–493

    Google Scholar 

  53. Milchev A, Kruijt WS, Sluyters-Rehbach M, Sluyters JH (1993) Distribution of the nucleation rate in the vicinity of a groving spherical cluster. Part 1. Theory and simulation results. J Electroanal Chem 362:21–31; Kruijt WS, Sluyters-Rehbach M, Sluyters JH, Milchev A (1994) Distribution of the nucleation rate in the vicinity of a growing spherical cluster. Part 2. Theory of some special cases and experimaental results. J Electroanal Chem 371:13–26

    Google Scholar 

  54. Popov KI, Krstajić NV (1983) The mechanism of spongy electrodeposits formation on inert substrate at low overpotentials. J Appl Electrochem 13:775–782

    Article  CAS  Google Scholar 

  55. Markov I (1976) Saturation nucleus density in the electrodeposition of metal onto inert electrodes. I. Theory. Thin Solid Films 35:11–20; Markov I, Stoycheva E (1976) Saturation nucleus density in the electrodeposition of metal onto inert electrodes. II. Experimental. Thin Solid Films 35:21–35

    Google Scholar 

  56. Kaishew R, Mutafctschiew B (1965) Electrolytic nucleation of mercury. Electrochim Acta 10:643–650 (in German)

    Article  Google Scholar 

  57. Erdey-Grúz T, Volmer Z (1931) Overvoltage of metals. Z Phys Chem 157A:165–181 (in German)

    Google Scholar 

  58. Fetter K (1967) Electrochemical kinetics. Khimiya, Moscow (in Russian)

    Google Scholar 

  59. Fleischmann M, Thirsk HR (1959) The potentiostatic study of the growth of deposits on electrodes. Electrochim Acta 1:146–160

    Article  CAS  Google Scholar 

  60. Kovarskii NY, Lisov AV (1984) Periodicities in the surface structure of polycrystalline electrolytic deposits. Elektrokhimiya 20:221–225 (in Russian)

    CAS  Google Scholar 

  61. Kovarskii NY, Lisov AV (1984) The reasons for the structure periodicity in the surfaces of electrolyte copper deposits. Elektrokhimiya 20:833–837 (in Russian)

    CAS  Google Scholar 

  62. Kovarskii NY, Arzhanova TA (1986) On the nature of the “no nucleation” zones in the electrocrystallization process. Elektrokhimiya 20:452–458 (in Russian)

    Google Scholar 

  63. Popov KI, Grgur BN, Stojilković ER, Pavlović MG, Nikolić ND (1997) The effect of deposition process exchange current density on the thin metal films formation on inert substrate. J Serb Chem Soc 62:433–442

    CAS  Google Scholar 

  64. Popov KI, Krstajić NV, Popov SR (1983) Fundamental aspects of plating technology. II: morphological aspects of metal electrodeposition from complex salt solutions. Surf Technol 20:203–208

    Article  CAS  Google Scholar 

  65. Dimitrov AT, Hadži-Jordanov S, Popov KI, Pavlović MG, Radmilović V (1998) Electrodeposition of silver from nitrate solutions: part I. Effect of phosphate ions on morphology. J Appl Electrochem 28:791–796

    Article  CAS  Google Scholar 

  66. Popov KI, Pavlović MG, Grgur BN, Dimitrov AT, Hadži-Jordanov S (1998) Electrodeposition of silver from nitrate solutions: part II. Mechanism of the effect of phospate ions. J Appl Electrochem 28:797–801

    Article  CAS  Google Scholar 

  67. Radmilović V, Popov KI, Pavlović MG, Dimitrov AT, Hadži-Jordanov S (1998) The mechanism of silver granular electrodeposits formation. J Solid State Electrochem 2:162–169

    Article  Google Scholar 

  68. Popov KI, Rodaljević ZP, Krstajić NV, Novaković SD (1985) Fundamental aspects of plating technology V: the effect of strongly adsorbed species on the morphology of metal deposit. Surf Technol 25:217–222

    Article  CAS  Google Scholar 

  69. Meibuhr S, Yeger E, Kozawa A, Hovorka F (1963) The electrochemistry of tin I. Effect of nonionic addition agents on electrodeposition from stannous sulfate solutions. J Electrochem Soc 110:190–202

    Article  CAS  Google Scholar 

  70. Kabanov BN (1966) Electrochemistry of metal and adsorption. Nauka, Moscow (in Russian)

    Google Scholar 

  71. Lorenz W (1954) Oscillographic overvoltage measurements. Z Electrochem 58:912–918 (in German)

    CAS  Google Scholar 

  72. Despić AR (1983) Deposition and dissolution of metals and alloys. In: Bockris JO’M, Conway BE, Yeger E, White RE (eds) Comprehensive treatise of electrochemistry, 2nd edn. Plenum Press, New York

    Google Scholar 

  73. Oniciu L, Muresan LM (1991) Some fundamental aspects of levelling and brightening in metal electrodeposition. J Appl Electrochem 21:565–574

    Article  CAS  Google Scholar 

  74. Muresan LM, Varvara SC (2005) Levelling and brightening mechanisms in metal electrodeposition. In: Nunez M (ed) Metal electrodeposition. Nova Science Publishers Inc, ew York, pp 1–45

    Google Scholar 

  75. Kardos O, Foulke G (1962) Applications of mass transfer theory. In: Delahay P, Tobias CW (eds) Electrodeposition on small-scale profiles. Advances in electrochemistry and electrochemical engineering, 2nd edn. Interscience, New York

    Google Scholar 

  76. Ibl N (1983) Current distribution. In: Yeger E, Bockris JO’M, Conway BE, Sarangapani S (eds) Comprehensive treatise of electrochemistry, 6th edn. Plenum Press, New York

    Google Scholar 

  77. Kruglikov SS, Kudriavtsev NT, Vorobiova GF, Antonov AY (1965) On the mechanism of levelling by addition agents in electrodeposition of metals. Electrochim Acta 10:253–262

    Article  CAS  Google Scholar 

  78. Dukovic JO, Tobias CW (1990) Simulation of levelling in electrodeposition. J Electrochem Soc 137:3748–3755

    Article  CAS  Google Scholar 

  79. Đorđević S, Maksimović MD, Pavlović MG, Popov KI (1997) Electroplating. Tehnička knjiga, Beograd (in Serbian)

    Google Scholar 

  80. Krichmar SI (1965) On the theory of the levelling action in the electrochemical behaviour of metals. Elektrokhimiya 1:858–861 (in Russian); Krichmar SI (1965) Levelling mechanism in the cathodic deposition of nickel. Zh Fiz Khim 39:602–603 (in Russian)

    Google Scholar 

  81. Krichmar SI, Pronskaya AY (1965) Experimental investigation of the levelling effect in the cathodic deposition of nickel from coumarine containing electrolytes. Zh Fiz Khim 39:741–744 (in Russian)

    CAS  Google Scholar 

  82. Jordan KG, Tobias CW (1991) The effect of inhibitor transport on levelling in electrodeposition. J Electrochem Soc 138:1251–1259

    Article  CAS  Google Scholar 

  83. Dukovic JO (1993) Feature-scale simulation of resist-pattered electrodposition. IBM J Res Develop 37:125–141

    Article  CAS  Google Scholar 

  84. Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnection. IBM J Res Develop 42:567–574

    Article  CAS  Google Scholar 

  85. Schlesinger M, Paunovic M (eds) (2000) Modern electroplating. Wiley-interscience publication, New York

    Google Scholar 

  86. Weil R, Paquin R (1960) The relationship between brightness and structure in electroplated nickel. J Elec-trochem Soc 107:87–91

    Article  CAS  Google Scholar 

  87. Nikolić ND, Rakočević Z, Popov KI (2005) Nanostructural analysis of bright metal surfaces in relation to their reflectivities. In: Conway BE, Vayenas CG, White RE, Gamboa-Adelco M (eds) Modern aspects of electrochemistry, vol 38. Kluwer Academic/Plenum Publishers, New York, pp 425–474

    Chapter  Google Scholar 

  88. Dennis JK, Such TE (1993) Nickel and chromium plating. Wood head publ. ltd, Cambridge

    Book  Google Scholar 

  89. Nichols RJ, Bach CE, Meyer H (1993) The effect of three organic additives on the structure and growth of electrodeposited copper: an in-sity scaning probe microscopy study. Ber Bunsenges Phys Chem 97:1012–1020

    Article  CAS  Google Scholar 

  90. Czerwinski F, Kondo K, Szpunar JA (1997) Atomic force microscopy study of surface morphology of zinc-iron electrodeposits. J Electrochem Soc 144:481–484

    Article  CAS  Google Scholar 

  91. Nikolić ND, Rakočević Z, Popov KI (2001) Structural characteristics of bright copper surfaces. J Electroanal Chem 514:56–66

    Article  Google Scholar 

  92. Nikolić ND, Rakočević Z, Popov KI (2001) The STM analysis of a silver mirror surface. J Serb Chem Soc 66:723–727

    Google Scholar 

  93. Edwards J (1953) The mechanism of electropolishing of copper in phosphoric acid solutions. I. Processes preceding the establishment of polishing conditions. J Electrochem Soc 100:189c–194c

    Article  CAS  Google Scholar 

  94. Wagner C (1954) Contribution to the theory of electropolishing. J Electrochem Soc 101:225–228

    Article  CAS  Google Scholar 

  95. Krichmar SI, Pronskaya AY (1966) Study of the levelling effect in electrochemical polishing of metals. Elektrokhimiya 2:69–73 (in Russian)

    CAS  Google Scholar 

  96. Popov KI, Pavlović MG, Rakočević Z, Škorić DM (1995) The structure of bright copper surfaces. J Serb Chem Soc 60:873–878

    CAS  Google Scholar 

  97. Nikolić ND, Rakočević Z, Popov KI (2004) Reflection and structural analyses of mirror bright metal coatings. J Solid State Electrochem 8:526–531

    Article  CAS  Google Scholar 

  98. Nikolić ND, Popov KI, Rakočević Z, Đurović DR, Pavlović MG, Stojanović M (2000) The structure of bright zinc coatings. J Serb Chem Soc 65:819–827

    Google Scholar 

  99. Nikolić ND, Rakočević Z, Đurović DR, Popov KI (2006) Nanostructural analysis of mirror – bright zinc coatings. Russ J Electrochem 42:1121–1126

    Article  CAS  Google Scholar 

  100. Nikolić ND, Novaković G, Rakočević Z, Đurović DR, Popov KI (2002) Comparative reflection and structural analyses of copper and zinc coatings electrodeposited from acid sulfate solutions without and with additives. Surf Coat Technol 161:188–194

    Article  Google Scholar 

  101. Bockris JO’M, Nagy Z, Dražić DM (1973) On the morphology of zinc electrodeposited from alkaline solutions. J Electrochem Soc 120:30–41

    Article  CAS  Google Scholar 

  102. Jovićević JN, Despić AR, Dražić DM (1977) Studies of the deposition of cadmium on foreign substrates. Electrochim Acta 22:577–587

    Article  Google Scholar 

  103. Despić AR, Dražić MD, Mirjanić MD (1978) Granular growth of electrochemically deposited metals. Faraday Discuss Chem Soc 12:126–135

    Google Scholar 

  104. Popov KI, Čekerevac MI, Nikolić LjN (1988) The dendritic electrocrystallization of cadmium from acid sulphate solutions I: Granular cadmium substrate. Surf Coat Technol 34:219–229

    Article  CAS  Google Scholar 

  105. Popov KI, Krstajić NV, Jerotijević ZD, Marinković SR (1985) Electrocrystallization of silver from silver nitrate solutions at low overpotentials. Surf Technol 26:185–188

    Article  CAS  Google Scholar 

  106. Jović VD, Nikolić ND, Lačnjevac UČ, Jović BM, Popov KI (2012) Morphology of different electrodeposited pure metal powders. In: Djokić SS (ed) Electrochemical production of metal powders, vol 54, Series: modern aspects of electrochemistry. Springer, New York, pp 63–123

    Chapter  Google Scholar 

  107. Price PB, Vermilyea DA (1958) Kinetics of electrodeposition of silver. J Chem Phys 28:720–721

    Article  CAS  Google Scholar 

  108. Popov KI, Živković PM, Krstić SB, Nikolić ND (2009) Polarization curves in the Ohmic controlled electrodeposition of metals. Electrochim Acta 54:2924–2931

    Article  CAS  Google Scholar 

  109. Meibhur S, Yeager E, Kozawa A, Hovorka F (1963) The electrochemistry of tin: I. Effects of nonionic addition agents on electrodeposition from stannous sulfate solutions. J Electrochem Soc 110:190–202

    Article  Google Scholar 

  110. Popov KI, Pavlović MG, Stojilković ER, Stevanović ZŽ (1997) The current density distribution on stationary wire electrodes during copper and lead electro-deposition. Hydrometallurgy 46:321–336

    Article  CAS  Google Scholar 

  111. Nikolić ND, Popov KI, Živković PM, Branković G (2013) A new insight into the mechanism of lead electrodeposition: Ohmic–diffusion control of the electrodeposition process. J Electroanal Chem 691:66–76

    Article  CAS  Google Scholar 

  112. Popov KI, Krstajić NV, Popov SR, Čekerevac MI (1986) Spongy electrodeposit formation. J Appl Electrochem 16:771–774

    Article  CAS  Google Scholar 

  113. Popov KI, Krstajić NV, Simičić MV, Bibić NM (1992) The initial stage of spongy electrodeposit formation on inert substrate. J Serb Chem Soc 57:927–933

    CAS  Google Scholar 

  114. Jakšić MM (1985) Impurity effects on the macromorphology of electrodeposited zinc I: theoretical consideration and a review of existing knowledge. Surf Technol 24:193–217

    Article  Google Scholar 

  115. Murashova I, Pomosov B (1989) Electrodeposition of metals in dendritic shapes. In: Polukarov YM (ed) In Itogi nauki i tehniki, Seria Elektrokhimiya, vol 30. Acad Sci, Moscow (in Russian)

    Google Scholar 

  116. Popov KI, Živković PM, Nikolić ND (2012) Formation of disperse silver deposits by the electrodeposition processes at high overpotentials. Int J Electrochem Sci 7:686–696

    CAS  Google Scholar 

  117. Toshev S, Markov I (1967) Electrolytic nucleation of cadmium. Electrochim Acta 12:281–286

    Article  CAS  Google Scholar 

  118. Popov KI, Krstajić NV, Popov SR (1985) The morphology of cadmium deposits obtained on foreign substrates at high overpotentials. J Appl Electrochem 15:151–154

    Article  CAS  Google Scholar 

  119. Price PB, Vermilyea DA, Webb MB (1958) The growth and properties of electrolytic whiskers. Acta Mat 6:524–531

    Article  CAS  Google Scholar 

  120. Gorbunova KM, Zhukova AJ (1949) Crystallochemical and diffusion mechanism of electrocrystallization. Zh Fiz Khim 23:605–615 (in Russian)

    CAS  Google Scholar 

  121. Gorbunova KM, Pankov PD (1949) Regularities in the crystallization of thin silver filaments. Zh Fiz Khim 23:616–624 (in Russian)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popov, K.I., Djokić, S.S., Nikolić, N.D., Jović, V.D. (2016). Mechanisms of Formation of Some Forms of Electrodeposited Pure Metals. In: Morphology of Electrochemically and Chemically Deposited Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-26073-0_2

Download citation

Publish with us

Policies and ethics