Skip to main content

Detection of β-Lactamases and Their Activity Using MALDI-TOF MS

  • Chapter
  • First Online:

Abstract

β-Lactamases, especially carbapenemases, represent a current threat to human medicine. They are also spread in animals, farms, and wildlife. Therefore, their fast and reliable detection is important for prevention of their uncontrolled spread. Here, we describe two methods based on matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry allowing functional detection of hydrolysis products of β-lactams as well as an assay for direct visualization of the molecular mass of lactamase. Using antibiotic molecular signal monitoring, fast identification of β-lactamases important for treatment and setting up barrier precautions preventing their spread is possible. On the contrary, direct enzyme molecular signal monitoring is reliable for epidemiological studies, typing of the isolates, and precise identification of β-lactamase type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Borer A, Saidel-Odes L, Riesenberg K. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30:972–6.

    Article  Google Scholar 

  • Borg MA, Zarb P, Ferech M, Goosens H. Antibiotic consumption in southern and eastern Mediterranean hospitals: results from the ARMed project. J Antimicrob Chemother. 2008;62:830–6.

    Article  CAS  Google Scholar 

  • Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1-2.5 hours. J Clin Microbiol. 2011;49:3321–4.

    Article  CAS  Google Scholar 

  • Bush K. The ABCD’s of β-lactamase nomenclature. J Infect Chemother. 2013;19:549–59.

    Article  CAS  Google Scholar 

  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54:969–76.

    Article  CAS  Google Scholar 

  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–33.

    Article  CAS  Google Scholar 

  • Cai JC, Hu YY, Zhang R, Zhou HW, Chen G-X. Detection of Ompk36 porin loss in Klebsiella spp. by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50:2179–82.

    Article  CAS  Google Scholar 

  • Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2007;389:1633–8.

    Article  CAS  Google Scholar 

  • Cantón R, Akóva M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen Ø, Seifert H, Woodford N, Nordmann P, European Network on Carbapenemases. (2012) Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 18: 413–31.

    Article  Google Scholar 

  • Carricajo A, Verhoeven PO, Guezzou S, Fonsale N, Aubert G. Detection of carbapenemase-producing bacteria using the ultra-performance liquid chromatography-tandem mass spectrometry method. Antimicrob Agents Chemother. 2014;58:1231–4.

    Article  CAS  Google Scholar 

  • Carvalhaes CG, Cayô R, Assis DM. Detection of SPM-1-producing Pseudomonas aeruginosa and class D β-lactamase-producing Acinetobacter baumannii isolates by use of liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:287–90.

    Article  CAS  Google Scholar 

  • Chong PM, McCorrister SJ, Unger MS, Boyd DA, Mulvey MR, Westmacott GR. MALDI-TOF MS detection of carbapenemase activity in clinical isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii compared against the Carba-NP assay. J Microbiol Methods. 2015;111:21–3.

    Article  CAS  Google Scholar 

  • Cornaglia G, Akova M, Amicosante G. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents. 2007;29:380–8.

    Article  CAS  Google Scholar 

  • Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208:239–41.

    Article  CAS  Google Scholar 

  • Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20:831–8.

    Article  CAS  Google Scholar 

  • Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56:6437–40.

    Article  CAS  Google Scholar 

  • European Centre For Disease Prevention and Control (ECDC). (2012) Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). http://ecdc.europa.eu. Accessed 31 March 2015.

  • Gniadkowski M. Evolution of extended-spectrum beta-lactamases by mutation. Clin Microbiol Infect. 2008;14(Suppl 1):11–32.

    Article  CAS  Google Scholar 

  • Hede K. Antibiotic resistance: an infectious arms race. Nature. 2014;509:S2–S3.

    Article  CAS  Google Scholar 

  • Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65:1119–25.

    Article  CAS  Google Scholar 

  • Hrabak J, Walkova R, Studentova V, Chudackova E, Bergerova T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:3222–7.

    Article  CAS  Google Scholar 

  • Hrabak J, Chudackova E, Walkova R. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26:103–14.

    Article  CAS  Google Scholar 

  • Hrabak J, Chudackova E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20:839–53.

    Article  CAS  Google Scholar 

  • Hughes VM, Datta N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature. 1983;302:725–6.

    Article  CAS  Google Scholar 

  • Kempf M, Bakour S, Flaudrops C. Rapid detection of carbapenem resistance in Acinetobacter baumanii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS ONE. 2012;7:e31676.

    Article  CAS  Google Scholar 

  • Kirby WMM. Extraction of a highly potent penicillin inactivator from penicillin resistant Staphylococci. Science. 1944;99:452–3.

    Article  CAS  Google Scholar 

  • Knox J, Jadhav S, Sevior D, Agyekum A, Whipp M, Waring L, Iredell J, Palombo E. Phenotypic detection of carbapenemase-producing Enterobacteriaceae by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Carba NP test. J Clin Microbiol. 2014;52:4075–7.

    Article  CAS  Google Scholar 

  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–S9.

    Article  CAS  Google Scholar 

  • Mendez A, Chagastelles P, Palma E, Nardi N, Schapoval E. Thermal and alkaline stability of meropenem: degradation products and cytotoxicity. Int J Pharm. 2008;350:95–102.

    Article  CAS  Google Scholar 

  • Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8.

    Article  CAS  Google Scholar 

  • Papagiannitsis CC, Kotsakis SD, Tuma Z, Gniadkowski M, Miriagou V, Hrabak J. Identification of CMY-2-type cephalosporinases in clinical isolates of Enterobacteriaceae by MALDI-TOF MS. Antimicrob Agents Chemother. 2014;58:2952–7.

    Article  CAS  Google Scholar 

  • Papagiannitsis CC, Študentová V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E, Hrabak J. MALDI-TOF MS meropenem hydrolysis assay with NH4HCO3, a reliable tool for the direct detection of carbapenemase activity. J Clin Microbiol. 2015;53:1731–5.

    Article  CAS  Google Scholar 

  • Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099–106.

    Article  Google Scholar 

  • Pitout JD. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs. 2010;70:313–33.

    Article  CAS  Google Scholar 

  • Schaumann R, Knoop N, Gnzel GH, Losensky K, Rosenkranz C, Stingu CS, Schellenberger W, Rodlodd AC, Eschrich K. A step towards the discrimination of beta-lactamase-producing clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa by MALDI-TOF mass spectrometry. Med Sci Monit. 2012;18:MT1–7.

    Article  Google Scholar 

  • Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol. 2012;50:927–37.

    Article  CAS  Google Scholar 

  • Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, Gniadkowski M, Hrabak J. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol. 2015;60:119–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Hrabak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hrabak, J., Havlicek, V., Papagiannitsis, C. (2016). Detection of β-Lactamases and Their Activity Using MALDI-TOF MS. In: Demirev, P., Sandrin, T. (eds) Applications of Mass Spectrometry in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-26070-9_12

Download citation

Publish with us

Policies and ethics