Skip to main content

Biorefinery Alternatives

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents a brief review of biorefinery definitions and concepts. The state of the art of biochemical and thermochemical routes to produce biofuels and bio-based chemicals is discussed, showing the current level of the available technologies. The major pieces of equipment commonly used in the first- and second-generation project designs are also covered. A historical background on the development of process simulation environments is presented in order to give some insights into process modeling and simulation. First- and second-generation biorefinery simulations are shown at the end of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    COM/DCOM—Component Object Model/Distributed Component Object Model.

  2. 2.

    CORBA—Common Object Request Broker Architecture.

  3. 3.

    OpenMP—Open Multiprocessing.

  4. 4.

    PVM—Parallel Virtual Machine.

  5. 5.

    MPI—Message Passing Interface.

References

  • Aden A, Ruth M, Ibsen K et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/docs/fy02osti/32438.pdf. Accessed May 2015

  • Agger JW, Isaksen T, Várnai A et al (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111(17):6287–6292. doi:10.1073/pnas.1323629111

    Article  Google Scholar 

  • Aita GA, Salvi DA, Walker MS (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour Technol 102(6):4444–4448. doi:10.1016/j.biortech.2010.12.095

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  • Andersson J, Lundgren J (2014) Techno-economic analysis of ammonia production via integrated biomass gasification. Appl Energ 130(1):484–490. doi:10.1016/j.apenergy.2014.02.029

    Article  Google Scholar 

  • Andrade RR, Rabelo SC, Maugeri Filho F et al (2013) Evaluation of the alcoholic fermentation kinetics of enzymatic hydrolysates from sugarcane bagasse (Saccharum officinarum L.). J Chem Technol Biotechnol 88(6):1049–1057. doi:10.1002/jctb.3937

    Article  Google Scholar 

  • Andrietta SR (1994) Modelagem, simulação e controle de fermentação alcoólica contínua em escala industrial. Ph.D. Thesis, Universidade Estadual de Campinas—UNICAMP

    Google Scholar 

  • Aspentech (2009) Aspen physical property system—physical property methods and models.

    Google Scholar 

  • Baeyens J, Kang Q, Appels L et al (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energ Combust 47:60–88. doi:10.1016/j.pecs.2014.10.003

    Article  Google Scholar 

  • Bals BD, Wedding C, Balan V et al (2011) Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production. Bioresour Technol 102:1277–1283. doi:10.1016/j.biortech.2010.08.058

    Article  Google Scholar 

  • Barrett WM, Jun Y (2005) Development of a chemical process modeling environment based on CAPE-OPEN interface standards and the Microsoft.NET framework. Comput Chem Eng 30(2):191–201. doi:10.1016/j.compchemeng.2005.08.017

    Article  Google Scholar 

  • Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Elsevier Inc, Amsterdam

    Google Scholar 

  • Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory. Elsevier Inc., USA

    Google Scholar 

  • Bazico (2010) Açúcar. Bazico Tecnologia Comercial. http://www.bazico.com.br/produto/com_acucar.htm. Accessed May 2011

  • Behera S, Arora R, Nandhagopal N et al (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106. doi:10.1016/j.rser.2014.04.047

    Article  Google Scholar 

  • Bergman PCA, Kiel JHA (2005) Torrefaction for biomass upgrading. In: 14th European biomass conference and exhibition, Paris, 17–21 Oct 2005

    Google Scholar 

  • BNDES, CGEE (2008) Sugarcane-based bioethanol: energy for sustainable development. Coordination Banco Nacional de Desenvolvimento—BNDES and Centro de Gestão e Estudos Estratégicos—CGEE, Rio de Janeiro

    Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi:10.1039/b922014c

    Article  Google Scholar 

  • Braskem (2015) I’m Green. http://www.braskem.com.br/site.aspx/plastic-green. Accessed Apr 2015

  • Bridgwater AV (2012a) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94. doi:10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  • Bridgwater AV (2012b) Upgrading biomass fast pyrolysis liquids. Environ Prog Sustain Energy 31(2):261–268. doi:10.1002/ep.11635

    Article  Google Scholar 

  • Brown RC (2006) Biomass refineries based on hybrid thermochemical-biological processing—an overview. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products, vol 1. Wiley-VCH, Weinheim, pp 227–252

    Google Scholar 

  • Camargo CA (1990) Manual de recomendações para conservação de energia na indústria do álcool e açúcar. Instituto de Pesquisas Tecnológicas—IPT, São Paulo

    Google Scholar 

  • Cardona CA, Sánchez O (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2456. doi:10.1016/j.biortech.2007.01.002

    Article  Google Scholar 

  • Cardoso TF (2014) Avaliação socioeconômica e ambiental de sistemas de recolhimento e uso da palha de cana-de-açúcar. Ph.D. Thesis, Universidade Estadual de Campinas—UNICAMP

    Google Scholar 

  • Cardoso TDF, Cavalett O, Chagas MF et al (2013) Technical and economic assessment of trash recovery in the sugarcane bioenergy. Sci Agric 70(5):353–360

    Article  Google Scholar 

  • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T et al (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energ 113:277–286. doi:10.1016/j.apenergy.2013.07.036

    Article  Google Scholar 

  • CGEE (2009) Bioetanol combustível: uma oportunidade para o Brasil. Centro de Gestão e Estudos Estratégicos—CGEE, Brasília

    Google Scholar 

  • Chandel AK, Junqueira TL, Morais ER et al (2014) Techno-economic analysis of second-generation ethanol in Brazil: competitive, complementary aspects with first-generation ethanol. In: Silva SS, Chandel AK (eds) Biofuels in Brazil: fundamental aspects, recent developments, and future perspectives. Springer Science & Business Media, London, pp 1–29

    Chapter  Google Scholar 

  • Chávez-Rodríguez M (2010) Uso de água na produção de etanol de cana-de-açúcar. Dissertation, Universidade Estadual de Campinas—UNICAMP

    Google Scholar 

  • Chouhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sustain Energ Rev 15(9):4378–4399. doi:10.1016/j.rser.2011.07.112

    Article  Google Scholar 

  • Chen JCP, Chou CC (1993) Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. Wiley, New York

    Google Scholar 

  • Cherubini F, Jungmeier G, Wellisch M et al (2009) Toward a common classification approach for biorefinery systems. Biofuel Bioprod Biorefin 3(5):534–546. doi:10.1002/bbb.172

    Article  Google Scholar 

  • Choi S, Woo C, Ho J et al (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239. doi:10.1016/j.ymben.2014.12.007

    Article  Google Scholar 

  • CO-LAN (2010) COLAN—the CAPE-OPEN laboratories network—2010 Brochure. http://www.colan.org/Communication/Brochure2010.pdf. Accessed Jun 2015

  • Colby College (2012) Computational chemistry lab. http://www.colby.edu/chemistry/webmo/mointro.html. Accessed May 2015

  • Compton DL, Jackson MA, Mihalcik DJ et al (2011) Catalytic pyrolysis of oak via pyroprobe and bench scale, packed bed pyrolysis reactors. J Anal Appl Pyrol 90:174–181. doi:10.1016/j.jaap.2010.12.003

    Article  Google Scholar 

  • COPERSUCAR (1989) Curso Básico sobre Tratamento do Caldo. Centro de Tecnologia Copersucar, Piracicaba

    Google Scholar 

  • Cortez LAB, Lora EES, Gómez EO (eds) (2008) Biomassa para energia. Editora Unicamp, Campinas

    Google Scholar 

  • Cremonez PA, Feroldi M, Araújo AV et al (2015) Biofuels in Brazilian aviation: current scenario and prospects. Renew Sust Energ Rev 43:1063–1072. doi:10.1016/j.rser.2014.11.097

    Article  Google Scholar 

  • CTBE (2012) The virtual sugarcane biorefinery (VSB): 2011 Report. National Laboratory of Science and Technology of Bioethanol (CTBE). http://ctbe.cnpem.br/pesquisa/avaliacao-integrada-biorrefinarias. Accessed Mar 2015

  • Cutz L, Santana D (2014) Techno-economic analysis of integrating sweet sorghum into sugar mills: the Central American case. Biomass Bioenerg 68:195–214. doi:10.1016/j.biombioe.2014.06.011

    Article  Google Scholar 

  • Dale BE, Bals BD, Kim S et al (2010) Biofuels done right: land efficient animal feeds enable large environmental and energy benefits. Environ Sci Technol 44(22):8385–8389. doi:10.1021/es1031618

    Article  Google Scholar 

  • de Deugd RM (2004) Fischer-Tropsch synthesis revisited; efficiency and selectivity benefits from imposing temporal and/or spatial structure in the reactor, Thesis, Delft University of Technology, Netherlands, Ponsen & Looijen B.V., Wageningen, 159p

    Google Scholar 

  • de Jong E, Van RR, Van TR et al (2006) Biorefineries for the chemical industry—a Dutch point of view. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products, vol 1., Wiley-VCHWeinheim, Germany, pp 85–109

    Google Scholar 

  • de Jong E, Higson A, Walsh P et al (2012) Bio-based Chemicals: value added products from biorefineries. In: IEA Bioenergy Task 42 Biorefinery. http://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Biobased-Chemicals-value-added-products-from-biorefineries.pdf. Acessed May 2015

  • de Vries SC, van de Ven GWJ, van Ittersum MK et al (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenerg 34(5):588–601. doi:10.1016/j.biombioe.2010.01.001

    Article  Google Scholar 

  • Delfini P (2012) Cana crua x Extração. In: 13º Seminário Brasileiro Agroindustrial: a usina em Números. Revista da Sociedade dos Técnicos Açucareiros e Alcooleiros do Brasil—STAB. Ribeirão Preto, 24–25 Oct 2012

    Google Scholar 

  • Demirbas MF (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energ 86:S151–S161. doi:10.1016/j.apenergy.2009.04.043

    Article  Google Scholar 

  • Dias MOS (2008) Simulação do processo de produção de etanol a partir do açucar e do bagaço, visando a integração do processo e a maximização da produção de energia e excedentes do bagaço. Dissertation, Universidade Estadual de Campinas—UNICAMP

    Google Scholar 

  • Dias MOS, Cunha MP, Jesus CDF et al (2010) Simulation of ethanol production from sugarcane in Brazil: economic study of an autonomous distillery. In: European symposium on computer aided chemical engineering—ESCAPE 20, Ischia, June 2010. Computer Aided Chemical Engineering, vol 28. Elsevier B.V., Amsterdam, pp 733–738

    Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O (2012a) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161. doi:10.1016/j.biortech.2011.09.120

    Article  Google Scholar 

  • Dias MOS, Junqueira TL, Jesus CDF et al (2012b) Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy 43(1):246–252. doi:10.1016/j.energy.2012.04.034

    Article  Google Scholar 

  • Dias MOS, Junqueira TL, Rossell CEV et al (2013) Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Process Technol 109:84–89. doi:10.1016/j.fuproc.2012.09.041

    Article  Google Scholar 

  • Dias MOS, Maciel Filho R, Mantelatto PE et al (2015) Sugarcane processing for ethanol and sugar in Brazil. Environ Dev 15:35–51. doi:10.1016/j.envdev.2015.03.004

    Article  Google Scholar 

  • Dimian AC (2003) Integrated design and simulation of chemical processes. In: Gani R (ed) Computer-aided chemical engineering, vol 13. Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Durães FOM (2011) Sorgo sacarino: desenvolvimento de tecnologia agronômica. Agroenergia em Revista, 3rd edn. Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA, Brasília

    Google Scholar 

  • Dutta A, Phillips SD (2009) Thermochemical ethanol via direct gasification and mixed alcohol synthesis of lignocellulosic biomass. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/biomass/pdfs/45913.pdf. Accessed Apr 2015

  • Dutta A, Talmadge M, Hensley J et al (2011) Process design and economics for conversion of lignocellulosic biomass to ethanol: thermochemical pathway by indirect gasification and mixed alcohol synthesis. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/biomass/pdfs/51400.pdf. Accessed May 2015

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energ 69:114–122. doi:10.1016/j.renene.2014.02.044

    Article  Google Scholar 

  • DWSIM (2015) DWSIM Wiki. http://dwsim.inforside.com.br/wiki/index.php?title=Main_Page. Accessed Jun 2015

  • EIA (2012) International energy statistics. U.S. Energy Information Administration—EIA. http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm. Accessed May 2015

  • EMSO (2015) EMSO—environment for modeling, simulation, and optimization. http://vrtech.com.br/rps/emso.html. Accessed Jun 2015

  • Ensinas AV (2008) Integração termica e otimização termoeconomica aplicadas ao processo industrial de produção de açucar e etanol a partir da cana-de-açucar. Ph.D. thesis, Universidade Estadual de Campinas—UNICAMP

    Google Scholar 

  • Ensinas AV, Nebra SA, Lozano MA et al (2007) Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane. Energ Convers Manage 48(11):2978–2987. doi:10.1016/j.enconman.2007.06.038

    Article  Google Scholar 

  • Ensinas AV, Modesto M, Nebra SA et al (2009) Reduction of irreversibility generation in sugar and ethanol production from sugarcane. Energy 34(5):680–688. doi:10.1016/j.energy.2008.06.001

    Article  Google Scholar 

  • Fermeglia M, Parenzan M (2007) Cape open interface revisited in term of class-based framework: an implementation in.NET. Chem Eng Trans 11:235–240

    Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C et al (2006) Biorefineries: current status, challenges, and future direction. Energ Fuel 20(3):1727–1737. doi:10.1021/ef060097w

    Article  Google Scholar 

  • Finguerut J, Paes, LAP (2014) Impurezas e qualidade de cana-de-açúcar—levantamento dos níveis de impurezas nas últimas safras. In: Workshop sobre a Limpeza da Cana Crua e Qualidade da Matéria-Prima. Stab, Piracicaba, SP

    Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg 46:70–78. doi:10.1016/j.biombioe.2012.03.026

    Article  Google Scholar 

  • Garcia V (2008) Subproduto de destilaria de óleo fúsel: caracterização da composição química e estudo de sua aplicação industrial. Dissertation, Instituto de Tecnologia de Mauá

    Google Scholar 

  • GEO Energética (2013) Tecnologia inovadora para a produção de biogás revoluciona a agroindústria brasileira. http://www.geoenergetica.com.br/imprensa/16/Tecnologia-inovadora-para-a–producao-de-biogas-revoluciona-a-agroindustria-brasileira. Accessed Jun 2015

  • Ghaffar T, Irshad M, Anwar Z et al (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229. doi:10.1016/j.jrras.2014.03.002

    Article  Google Scholar 

  • Giese EC, Pierozzi M, Dussán KJ et al (2013) Enzymatic saccharification of acid-alkali pretreated sugarcane bagasse using commercial enzyme preparations. J Chem Tech Biotechnol 88(7):1266–1272. doi:10.1002/jctb.3968

    Article  Google Scholar 

  • Gilbert P, Alexander S, Thornley P et al (2014) Assessing economically viable carbon reductions for the production of ammonia from biomass gasification. J Clean Prod 64:581–589. doi:10.1016/j.jclepro.2013.09.011

    Article  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800. doi:10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156(3):201–207. doi:10.1078/0944-5013-00104

    Article  Google Scholar 

  • Gupta A, Verma J P (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567. doi:10.1016/j.rser.2014.08.032

    Google Scholar 

  • Hassuani SJ, Leal MRLV, Macedo IC (eds) (2005) Biomass power generation—sugarcane bagasse and trash. CTC and PNUD, Piracicaba

    Google Scholar 

  • He J, Zhang W (2008) Research on ethanol synthesis from syngas. J Zhejiang Univ-Sci A 9(5):714–719. doi:10.1631/jzus.A071417

    Article  Google Scholar 

  • Hofbauer H, Rauch R, Ripfel-Nitsche K (2007) Report on gas cleaning for synthesis applications work package 2E: Gas treatment. Institute of Chemical Engineering—University of Technology—Vienna. http://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/thermalnet_report_on_syngas_cleaning.pdf. Accessed May 2015

  • Hugot E (1986) Handbook of cane sugar engineering. Elsevier, Amsterdam

    Google Scholar 

  • Humbird D, Davis R, Tao L (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/biomass/pdfs/47764.pdf. Accessed Apr 2015

  • IEA (2008) IEA bioenergy task 42 biorefinery. http://www.biorefinery.nl/fileadmin/biorefinery/docs/Brochure_Totaal_definitief_HR_opt.pdf. Accessed May 2015

  • IEA (2011) Technology roadmaps: biofuels for transport. http://www.iea.org/publications/freepublications/publication/Biofuels_Roadmap_WEB.pdf. Accessed May 2015

  • Informa Economics FNP (2013) Usina pioneira de etanol de milho consolida a produção em escala comercial em Mato Grosso.IEA http://www.informaeconfnp.com/noticia/9530. Accessed Jul 2014

  • Jenekar GM, Karne TM, Thangamuthu P (2005) Separation of tramp iron and ferric materials from sugarcane to achieve efficient milling. In: Proceedings of the 79th annual congress of South African Sugar Technologists’ Association, 19–22 July 2005. Mount Edgecombe, South Africa, pp 267–272

    Google Scholar 

  • Junqueira TL (2010) Simulação de colunas de destilação convencional, extrativa e azeotropica no processo de produção de bioetanol atraves da modelagem de não equilibrio e da modelagem de estagios de equilibrio com eficiencia. Dissertation, Universidade Estadual de Campinas—UNICAMP

    Google Scholar 

  • Junqueira TL, Dias MOS, Jesus CDF et al (2011) Simulation and evaluation of autonomous and annexed sugarcane distilleries. Chem Eng Trans 25:941–946. doi:10.3303/CET1125157

    Google Scholar 

  • Kamm B, Kamm M (2004a) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145. doi:10.1007/s00253-003-1537-7

    Article  Google Scholar 

  • Kamm B, Kamm M (2004b) Biorefinery-systems. Chem Biochem Eng Q 18(1):1–6

    Article  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (eds) (2006) Biorefineries—industrial processes and products, vol 1. Wiley-VCH, Weinheim, p 441

    Google Scholar 

  • Karagöz P, Ozkan M (2014) Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol 158:286–293. doi:10.1016/j.biortech.2014.02.022

    Article  Google Scholar 

  • Karatzos S, McMillan J, Saddler J (2014) The potential and challenges of drop-in biofuels. A report by IEA bioenergy task 39. http://task39.org/files/2014/01/Task-39-drop-in-biofuels-report-summary-FINAL-14-July-2014-ecopy.pdf. Accessed 15 May 2015

  • Kersten S, Garcia-Perez M (2013) Recent developments in fast pyrolysis of ligno-cellulosic materials. Curr Opin Biotechnol 24:414–420. doi:10.1016/j.copbio.2013.04.003

    Article  Google Scholar 

  • Kesler MG, Kessler MM (1958) Flexible Flow. World Pet. 29, p 60

    Google Scholar 

  • Koppejan J, Sokhansanj S, Melin S et al (2012) Status overview of torrefaction technologies. In: IEA bioenergy task 32 report. http://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_review.pdf. Accessed 15 May 2015

  • Laird DA, Rogovska NP, Garcia-Perez M et al (2011) Pyrolysis and biochar—opportunities for distributed production and soil quality enhancement. In: Braun R, Karlen D, Johnson D (eds) Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six U.S. Regions. Soil and Water Conservation Society, Ankeny

    Google Scholar 

  • Leal MRLV (2010) Tecnological evolution of sugarcane processing for ethanol and electric power generation. In: Cortez LAB (ed) Sugarcane bioethanol—R&D for productivity and sustainability. Edgard Blücher‎, São Paulo, pp 561–576

    Google Scholar 

  • Leibbrandt NH, Knoetze JH, Görgens JF (2011) Comparing biological and thermochemical processing of sugarcane bagasse: an energy balance perspective. Biomass Bioenerg 35(5):2117–2126. doi:10.1016/j.biombioe.2011.02.017

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 38(4):449–467. doi:10.1016/j.pecs.2012.03.002

    Article  Google Scholar 

  • Lora EES, Venturini OJ (eds) (2012) Biocombustíveis. Interciência, Rio de Janeiro

    Google Scholar 

  • Luque R, Lin CSK, Du C et al (2009) Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chem 11(2):193–200. doi:10.1039/b813409j

    Article  Google Scholar 

  • Maas RHW, Bakker RR, Boersma AR et al (2008) Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion. Biotechnol Biofuels 1(14):1–13. doi:10.1186/1754-6834-1-14

    Google Scholar 

  • Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5(22). doi:10.1186/1754-6834-5-22

    Google Scholar 

  • Mafe OAT, Davies SM, Hancock J et al (2015) Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass. Biomass Bioenerg 72:28–38. doi:10.1016/j.biombioe.2014.11.024

    Article  Google Scholar 

  • Mahishi LH, Tripathi G, Rawal SK (2003) Poly(3-hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens PHB biosynthesis genes: effect of various carbon and nitrogen sources. Microbiol Res 158(1):19–27. doi:10.1078/0944-5013-00161

    Article  Google Scholar 

  • Mantelatto PE (2005) Estudo do processo de cristalização de soluções impuras de sacarose de cana-de-açúcar por resfriamento. Dissertation, Universidade Federal de São Carlos—UFSCAR

    Google Scholar 

  • Mantelatto PE (2009) Process for juice treatment in industrial large scale plant. In: BIOEN workshop on process for ethanol production, São Paulo

    Google Scholar 

  • Mantelatto PE (2010) Information about the sugarcane industry. Private communication

    Google Scholar 

  • Mariano AP, Maciel Filho R, Ezeji TC (2012) Energy requirements during butanol production and in situ recovery by cyclic vacuum. Renew Energ 47:183–187. doi:10.1016/j.renene.2012.04.041

    Article  Google Scholar 

  • Mariano AP, Dias MOS, Junqueira TL et al (2013) Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production. Bioresour Technol 142:390–399. doi:10.1016/j.biortech.2013.05.052

    Article  Google Scholar 

  • Martín MM (2014) Introduction to software for chemical engineers. CRC Press/Taylor & Francis, Boca Raton, Florida

    Book  Google Scholar 

  • Matsuoka S, Kennedy AJ, Santos EGD et al (2014) Energy cane: its concept, development, characteristics, and prospects. Adv Bot 2014:1–13. doi:10.1155/2014/597275

    Article  Google Scholar 

  • Meirelles AJA (2006) Expansão da produção de bioetanol e melhoria tecnológica da destilação alcoólica. In: Workshop Tecnológico sobre Produção de Etanol, Lorena. http://www.apta.sp.gov.br/cana/anexos/PPaper_sessao_4_Antonio_Meirelles.pdf

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combust 38(4):522–550. doi:10.1016/j.pecs.2012.02.002

    Article  Google Scholar 

  • Milanez AY, Nyko D, Valente MS et al (2014) A produção de etanol pela integração do milho-safrinha às usinas de cana-de-açúcar: avaliação ambiental, econômica e sugestões de política. Revista do BNDES 41:147–208

    Google Scholar 

  • Milanez AY, Nyko D, Valente MS et al (2015) De promessa a realidade: como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar—uma avaliação do potencial competitivo e sugestões de política pública. BNDES Setorial 41:237–29

    Google Scholar 

  • Modelica (2014) Modelica—a unified object-oriented language for systems modeling—language specification version 3.3 Revision 1. Modelica Association, 11 July 2014

    Google Scholar 

  • Modesto M, Zemp RJ, Nebra SA (2009) Ethanol production from sugar cane: assessing the possibilities of improving energy efficiency through exergetic cost analysis. Heat Transf Eng 30(4):272–281. doi:10.1080/01457630802380386

    Article  Google Scholar 

  • Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev 44:888–903. doi:10.1016/j.rser.2015.01.023

    Article  Google Scholar 

  • Novacana (2013) Sorgo sacarino é alternativa na entressafra de cana. http://www.novacana.com/n/etanol/alternativas/sorgo-sacarino-alternativa-entressafra-cana-220413. Accessed Jul 2013

  • Obando DS, Guialdrón MA, Reno MLG (2010) Techno-economic indicators for the thermochemical and biochemical routes for biofuels production using sugarcane bagasse and feedstock. In: XXVII Congress of the International Society of Sugar Cane Technologists. Cidade de Mexico

    Google Scholar 

  • Oliveira LRM, Nascimento VM, Gonçalves AR et al (2014) Combined process system for the production of bioethanol from sugarcane straw. Ind Crops Prod 58:1–7. doi:10.1016/j.indcrop.2014.03.037

    Article  Google Scholar 

  • Olivério JL, Ferreira FM (2010) Cogeneration—a new source of income for sugar and ethanol mills or bioelectricity—a new business. Proc Int Soc Sugar Cane Technol 27:1–12

    Google Scholar 

  • OpenModelica (2015) OpenModelica—introduction. In: OpenModelica website. https://openmodelica.org/index.php. Accessed Jun 2015

  • OSI (2015) OSI—Open source initiative. http://opensource.org. Accessed May 2015

  • Padula AD, Santos MS, Ferreira L (2012) The emergence of the biodiesel industry in Brazil: current figures and future prospects. Energ Policy 44:395–405. doi:10.1016/j.enpol.2012.02.003

    Article  Google Scholar 

  • Pantelides CC, Urban ZE (2004) Process modelling technology: a critical review of recent developments. In: 6th International foundations of computer aided process design (FOCAPD’04), Princeton, New Jersey, 11–16 July 2004

    Google Scholar 

  • Payne JH (1989) Operações unitárias na produção de açúcar de cana. Nobel S.A, São Paulo

    Google Scholar 

  • Pedra Mill (2006) Data on the ethanol production process from sugarcane. Serrana

    Google Scholar 

  • Pelaez-Samaniego MR, Yadama V, Garcia-Perez M et al (2014) Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. J Anal Appl Pyrol 109:222–233. doi:10.1016/j.jaap.2014.06.008

    Article  Google Scholar 

  • Pfaltzgraff LA, Clark JH (2014) Green chemistry, biorefineries and second generation strategies for re-use of waste: an overview, In: Waldron K (ed) Advances in biorefineries: biomass and waste supply chain exploitation. Elsevier B.V., Amsterdam, pp 3–33

    Google Scholar 

  • Pourbafrani M, McKechnie J, Shen T et al (2014) Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production. J Clean Prod 78:104–111. doi:10.1016/j.jclepro.2014.04.050

    Article  Google Scholar 

  • Puig-Arnavat M, Bruno JC, Coronas A (2010) Review and analysis of biomass gasification models. Renew Sust Energ Rev 14:2841–2851. doi:10.1016/j.rser.2010.07.030

    Article  Google Scholar 

  • Rabelo SC, Amezquita Fonseca NA, Andrade RR et al (2011a) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenerg 35(7):2600–2607. doi:10.1016/j.biombioe.2011.02.042

    Article  Google Scholar 

  • Rabelo SC, Carrere H, Maciel Filho R et al (2011b) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895. doi:10.1016/j.biortech.2011.05.081

    Article  Google Scholar 

  • Raman R (1985) Chemical process computations. Elsevier Applied Science Publishers Ltd., New York

    Google Scholar 

  • Ramos A, Marques LD, Santos JJ et al (2011) Atual estágio de desenvolvimento da tecnologia GTL e perspectivas para o Brasil. Quim Nova 34(10):1704–1716

    Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689. doi:10.1016/j.progpolymsci.2013.05.006

    Article  Google Scholar 

  • Rein P (2007) Cane sugar engineering. Verlag Dr, Albert Bartens KG, Berlin

    Google Scholar 

  • Ribeiro PR (2003) A Usina de Açúcar e sua Automação. SMAR, Araçatuba

    Google Scholar 

  • Richardson Y, Blin J, Julbe A (2012) Review: a short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Prog Energy Combust Sci 38:765–781. doi:10.1016/j.pecs.2011.12.001

    Article  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR et al (2010) Compositional variability of raw, steam exploded and delignificated sugarcane bagasse. In: AGRENER—8º Congresso Internacional sobre Geração Distribuída e Energia no Meio Rural, Campinas, Dez 2010

    Google Scholar 

  • Rodríguez-Zúñiga UF, Cannella D, Giordano RDC et al (2015) Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chem 17:2896–2903. doi:10.1039/C4GC02179G

    Article  Google Scholar 

  • Rossell CEV (2011) Data for the ethanol production process. Private communication

    Google Scholar 

  • Sathitsuksanoh N, George A, Zhang YHP (2013) New lignocellulose pretreatments using cellulose solvents: a review. J Chem Technol Biotechnol 88(2):169–180. doi:10.1002/jctb.3959

    Article  Google Scholar 

  • Scherrer R, Berlin E, Gerhardt P (1977) Density, porosity, and structure of dried cell walls isolated from bacillus megaterium and saccharomyces cerevisiae. J Bacteriol 129(2):1162–1164

    Google Scholar 

  • Seabra JEA (2008) Avaliação técnico-econômica de opções para o aproveitamento integral da biomassa de cana no Brasil. PhD Thesis, Universidade Estadual de Campinas – UNICAMP

    Google Scholar 

  • Silva AS, Inoue H, Endo T et al (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101(19):7402–7409. doi:10.1016/j.biortech.2010.05.008

    Article  Google Scholar 

  • Silva VFN, Arruda PV, Felipe MGA et al (2011) Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbio Biotechnol 38(7):809–17. doi:10.1007/s10295-010-0815-5

    Google Scholar 

  • Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. doi:10.1016/j.carbpol.2014.10.012

    Article  Google Scholar 

  • Spath P, Aden A, Eggeman T et al (2005) Biomass to hydrogen production detailed design and economics utilizing the battelle columbus laboratory indirectly heated gasifier. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/docs/fy05osti/37408.pdf. Accessed Apr 2015

  • Spath PL, Dayton DC (2003) Preliminary Screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/docs/fy04osti/34929.pdf. Accessed May 2015

  • Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528. doi:10.1039/B414039G

    Article  Google Scholar 

  • Stanmore BR (2010) Generation of energy from sugarcane bagasse by thermal treatment. Waste Biomass Valorization 1(1):77–89. doi:10.1007/s12649-009-9000-3

    Article  Google Scholar 

  • Stephanopoulos G, Gintaras VR (2011) Process systems engineering: from Solvay to modern bio and nanotechnology: a history of development, successes and prospects for the future. Chem Eng Sci 66(19):4272–4306. doi:10.1016/j.ces.2011.05.049

    Article  Google Scholar 

  • Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems: update and summary of recent progress. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/docs/fy01osti/29952.pdf. Accessed May 2015

  • Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuel 22:814–839. doi:10.1021/ef700411x

    Article  Google Scholar 

  • Swayze S (2009) The sweet sorghum opportunity: a complementary source of low-cost fermentable sugars for biofuel. Int Sugar J 111:691–695

    Google Scholar 

  • Tao L, Aden A, Elander RT et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102(24):11105–11114. doi:10.1016/j.biortech.2011.07.051

    Article  Google Scholar 

  • Tripathi AD, Srivastava SK, Singh RP (2013) Statistical optimization of physical process variables for bio-plastic (PHB) production by Alcaligenes sp. Biomass Bioenerg 55:243–250. doi:10.1016/j.biombioe.2013.02.017

    Article  Google Scholar 

  • Vaz Júnior S (ed) (2013) Biomassa para química verde. Embrapa Agroenergia, Brasília

    Google Scholar 

  • Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 2(2):245–264

    Google Scholar 

  • Walter A (2010) Potential of electricity production from sugarcane residues. In: Cortez LAB (ed) Sugarcane bioethanol—R&D for productivity and sustainability. Edgard Blücher‎, São Paulo, pp 577–582

    Google Scholar 

  • Walter A, Dolzan P, Quilodrán O et al (2008) A sustainability analysis of the Brazilian ethanol. UK Embassy and Department for Environment, Food & Rural Affairs—DEFRA. http://www.globalbioenergy.org/uploads/media/0811_Unicamp_-_A_sustainability_analysis_of_the_Brazilian_ethanol.pdf

  • Wang H, Pan J, Wang J (2014) Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain. Biotechnol Biotechnol Equip 28(6):1042–1049. doi:10.1080/13102818.2014.952501

    Article  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume 1—results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/docs/fy04osti/35523.pdf. Accessed May 2015

  • Westerberg AW, Hutchinson HP, Motard RL et al (1979) Process flowsheeting. Cambridge University Press, Cambridge

    Google Scholar 

  • Westerberg AW (1998) Process engineering: part II—a system view. Institute for Complex Engineered Systems. ICES, Carnegie Mellon University Pittsburgh, PA 15213

    Google Scholar 

  • Westereng B, Agger JW, Horn SJ et al (2013) Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A 1271(1):144–152. doi:10.1016/j.chroma.2012.11.048

    Article  Google Scholar 

  • Weusthuis RA, Aarts JMMJG, Sanders JPM (2011) From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals? Biofuel Bioprod Biorefin 5:486–494. doi:10.1002/bbb

    Article  Google Scholar 

  • Williams RH, Larson ED (1991) Advanced biomass power generation: the biomass-integrated gasifier/gas turbine and beyond. In: Kuliasha MA, Zucker A, Ballew KJ (eds) Technologies for a greenhouse constrained society: proceedings of the technologies for a greenhouse constrained society conference, Oak Ridge, Tennessee, pp 105–158

    Google Scholar 

  • Wooley RJ, Putsche V (1996) Development of an aspenplus physical property database for biofuels components. National Renewable Energy Laboratory—NREL. http://www.nrel.gov/docs/legosti/old/20685.pdf. Accessed May 2015

  • Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966. doi:10.1016/j.biortech.2005.01.010

    Article  Google Scholar 

  • Yoneda N, Kusano S, Yasui M (2001) Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A-Gen 221(1–2):253–265. doi:10.1016/S0926-860X(01)00800-6

    Article  Google Scholar 

  • Yu Q, Zhuang X, Lv S et al (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol 129:592–598. doi:10.1016/j.biortech.2012.11.099

    Article  Google Scholar 

  • Zhou Z, Wang C, Chen Y (2015) Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Biotechnol Prog 31(1):12–19. doi:10.1002/btpr.1998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bonomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morais, E.R. et al. (2016). Biorefinery Alternatives. In: Bonomi, A., Cavalett, O., Pereira da Cunha, M., Lima, M. (eds) Virtual Biorefinery. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26045-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26045-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26043-3

  • Online ISBN: 978-3-319-26045-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics